

Lecture Notes in Artificial Intelligence 4264
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

José L. Balcázar Philip M. Long
Frank Stephan (Eds.)

Algorithmic
Learning Theory

17th International Conference, ALT 2006
Barcelona, Spain, October 7-10, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

José L. Balcázar
Universitat Politecnica de Catalunya, Dept. Llenguatges i Sistemes Informatics
c/ Jordi Girona, 1-3, 08034 Barcelona, Spain
E-mail: balqui@lsi.upc.edu

Philip M. Long
Google
1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
E-mail: plong@google.com

Frank Stephan
National University of Singapore, Depts. of Mathematics and Computer Science
2 Science Drive 2, Singapore 117543, Singapore
E-mail: fstephan@comp.nus.edu.sg

Library of Congress Control Number: 2006933733

CR Subject Classification (1998): I.2.6, I.2.3, F.1, F.2, F.4, I.7

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-46649-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46649-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11894841 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 17th Annual Internation Con-
ference on Algorithmic Learning Theory (ALT 2006) which was held in Barcelona
(Catalunya, Spain), October 7–10, 2006. The conference was organized with sup-
port from the PASCAL Network within the framework of PASCAL Dialogues
2006, which comprised three conferences:

Learning 2006 provided a forum for interdisciplinary study and discussion of
the different aspects of learning and took place October 2–5, 2006 on the campus
of Vilanova i La Geltrú.

ALT 2006 was dedicated to the theoretical foundations of machine learning
and took place in the rooms of the Institute of Catalan Studies in Barcelona.
ALT provides a forum for high-quality talks with a strong theoretical background
and scientific interchange in areas such as query models, on-line learning, induc-
tive inference, algorithmic forecasting, boosting, support vector machines, kernel
methods, reinforcement learning and statistical learning models.

DS 2006 was the 9th International Conference on Discovery Science and
focused on the development and analysis of methods for intelligent data anal-
ysis, knowledge discovery and machine learning, as well as their application to
scientific knowledge discovery; as is already tradition, it was collocated and held
in parallel with Algorithmic Learning Theory.

In addition to these three conferences, the European Workshop on Curric-
ular Issues in Learning Theory initiated as the first regular meeting the Cur-
riculum Development Programme of the PASCAL Network taking place on
October 11, 2006.

The volume includes 24 contributions which the Programme Committee se-
lected out of 53 submissions. It also contains descriptions of the five invited talks
of ALT and DS; longer versions of the DS papers are available in the proceed-
ings of DS 2006. These invited talks were presented to the audience of both
conferences in joint sessions.

– Gunnar Rätsch (Friedrich Miescher Labor, Max Planck Gesellschaft, Tübin-
gen, Germany): “Solving Semi-Infinite Linear Programs Using Boosting-Like
Methods” (invited speaker for ALT 2006)

– Carole Goble (The University of Manchester, UK): “Putting Semantics into
e-Science and the Grid” (invited speaker for DS 2006)

– Hans Ulrich Simon (Ruhr-Universität Bochum, Germany):“The Usage of the
Spectral Norm in Learning Theory: Some Selected Topics” (invited speaker
for ALT 2006)

– Padhraic Smyth (University of California at Irvine, USA): “Data-Driven
Discovery Using Probabilistic Hidden Variable Models” (invited speaker for
DS 2006)

VI Preface

– Andrew Ng (Stanford University, USA): “Reinforcement Learning and Ap-
prenticeship Learning for Robotic Control” (invited speaker jointly of ALT
2006 and DS 2006)

Since 1999, ALT has been awarding the E. M. Gold Award for the most out-
standing contribution by a student. This year the award was given to Alp Atici
for his paper “Learning Unions of ω(1)-Dimensional Rectangles,” co-authored by
Rocco A. Servedio. We would like to thank Google for sponsoring the E. M. Gold
Award.

Algorithmic Learning Theory 2006 was the 17th in a series of annual confer-
ences established in Japan in 1990. A second root is the conference series Ana-
logical and Inductive Inference previously held in 1986, 1989, 1992 which merged
with the conference series ALT after a collocation in the year 1994. From then
on, ALT became an international conference series, which kept its strong links to
Japan but was also regularly held at overseas destinations including Australia,
Germany, Italy, Singapore, Spain and the USA.

Continuation of ALT 2006 was supervised by its Steering Committee consist-
ing of Naoki Abe (IBM Thomas J. Watson Research Center, Yorktown, USA),
Shai Ben-David (University of Waterloo, Canada), Roni Khardon (Tufts Univer-
sity, Medford, USA), Steffen Lange (FH Darmstadt, Germany), Philip M. Long
(Google, Mountain View, USA), Hiroshi Motoda (Osaka University, Japan), Akira
Maruoka (Tohoku University, Sendai, Japan), Takeshi Shinohara (Kyushu Insti-
tute of Technology, Iizuka, Japan), Osamu Watanabe (Tokyo Institute of Tech-
nology, Japan), Arun Sharma (Queensland University of Technology, Brisbane,
Australia – Co-chair), Frank Stephan (National University of Singapore, Repub-
lic of Singapore) and Thomas Zeugmann (Hokkaido University, Japan – Chair).

We would in particular like to thank Thomas Zeugmann for his continuous
support of the ALT conference series and in particular for running the ALT Web
page and the ALT submission system which he programmed together with Frank
Balbach and Jan Poland. Thomas Zeugmann assisted us in many questions with
respect to running the conference and to preparing the proceedings.

The ALT 2006 conference was made possible by the financial and adminis-
trative support of the PASCAL network, which organized this meeting together
with others in the framework of PASCAL Dialogues 2006. Furthermore, we ac-
knowledge the support of Google by financing the E. M. Gold Award (the cor-
responding award at Discovery Science 2006 was sponsored by Yahoo). We are
grateful for the dedication of the host, the Universitat Politécnica de Catalunya
(UPC), who organized the conference with much dedication and contributed to
ALT in many ways. We want to express our gratitude to the Local Arrange-
ments Chair Ricard Gavaldà and all other colleagues from the UPC, UPF and
UB, who put so much time into making ALT 2006 to a success. Here we want
also acknowledge the local sponsor Idescat, Statistical Institute of Catalonia.
Furthermore, the Institute for Theoretical Computer Science of the University
of Lübeck as well as the Division of Computer Science, Hokkaido University,
Sapporo, supported ALT 2006.

Preface VII

The conference series ALT was this year collocated with the series Discovery
Science as in many previous years. We are greatful for this continuous collabora-
tion and would like in particular to thank the conference Chair Klaus P. Jantke
and the Programme Committee Chairs Nada Lavrac and Ljupco Todorovski of
Discovery Science 2006.

We also want to thank the Programme Committee and the subreferees (both
listed on the next pages) for their hard work in selecting a good programme
for ALT 2006. Reviewing papers and checking the correctness of results are
demanding in time and skills and we very much appreciated this contribution to
the conference.

Last but not least we also want to thank the authors for choosing ALT 2006
as a forum to report on their research.

August 2006 Jose L. Balcázar
Philip M. Long
Frank Stephan

Organization

Conference Chair

Jose L. Balcázar Universitat Politécnica de Catalunya, Barcelona,
Spain

Program Committee

Shai Ben-David University of Waterloo
Olivier Bousquet Pertinence
Nader Bshouty Technion
Nicolò Cesa-Bianchi Universitá degli Studi di Milano
Henning Fernau University of Hertfordshire
Bill Gasarch University of Maryland
Sally Goldman Washington University in St. Louis
Kouichi Hirata Kyushu Institute of Technology, Iizuka
Marcus Hutter IDSIA
Efim Kinber Sacred Heart University
Philip M. Long Google (Co-chair)
Shie Mannor McGill University
Eric Martin The University of New South Wales
Partha Niyogi University of Chicago
Steffen Lange Fachhochschule Darmstadt
Hans-Ulrich Simon Ruhr-Universität Bochum
Frank Stephan National University of Singapore (Co-chair)
Etsuji Tomita The University of Electro-Communications
Sandra Zilles DFKI

Local Arrangements

Ricard Gavaldà Universitat Politécnica de Catalunya, Barcelona,
Spain

Subreferees

Hiroki Arimura
Amos Beimel
Jochen Blath

Francisco Casacuberta
Alexey Chernov
Alexander Clark

X Organization

Frank Drewes
Vitaly Feldman
Dmitry Gavinsky
Robert Glaubius
Gunter Grieser
Colin de la Higuera
Hiroki Ishizaka
Yuri Kalnishkan
Roni Khardon
Adam Klivans
Shigenobu Kobayashi
Shane Legg
Hanna Mazzawi
Tetsuhiro Miyahara
Sayan Mukherjee
Thomas Nichols
Jan Poland

Michael Richter
Sebastien Roch
Joseph Romano
Daniel Reidenbach
Cynthia Rudin
Daniil Ryabko
Hiroshi Sakamoto
Rocco Servedio
Takeshi Shinohara
William D. Smart
Yasuhiro Tajima
Eiji Takimoto
Franck Thollard
Vladimir Vovk
Mitsuo Wakatsuki
Osamu Watanabe

Sponsoring Institutions

Spanish Ministry of Science

Google

Pascal Network of Excellence

PASCAL Dialogues 2006

Universitat Politècnica de Calalunya

Idescat, Statistical Institute of Catalonia

Institut für Theoretische Informatik, Universität Lübeck

Division of Computer Science, Hokkaido University

Table of Contents

Editors’ Introduction . 1
Jose L. Balcázar, Philip M. Long, Frank Stephan

Invited Contributions

Solving Semi-infinite Linear Programs Using Boosting-Like Methods 10
Gunnar Rätsch

e-Science and the Semantic Web: A Symbiotic Relationship 12
Carole Goble, Oscar Corcho, Pinar Alper, David De Roure

Spectral Norm in Learning Theory: Some Selected Topics 13
Hans Ulrich Simon

Data-Driven Discovery Using Probabilistic Hidden Variable Models 28
Padhraic Smyth

Reinforcement Learning and Apprenticeship Learning for Robotic
Control . 29

Andrew Y. Ng

Regular Contributions

Learning Unions of ω(1)-Dimensional Rectangles . 32
Alp Atıcı, Rocco A. Servedio

On Exact Learning Halfspaces with Random Consistent Hypothesis
Oracle . 48

Nader H. Bshouty, Ehab Wattad

Active Learning in the Non-realizable Case . 63
Matti Kääriäinen

How Many Query Superpositions Are Needed to Learn? 78
Jorge Castro

Teaching Memoryless Randomized Learners Without Feedback 93
Frank J. Balbach, Thomas Zeugmann

XII Table of Contents

The Complexity of Learning SUBSEQ(A) . 109
Stephen Fenner, William Gasarch

Mind Change Complexity of Inferring Unbounded Unions of Pattern
Languages from Positive Data . 124

Matthew de Brecht, Akihiro Yamamoto

Learning and Extending Sublanguages . 139
Sanjay Jain, Efim Kinber

Iterative Learning from Positive Data and Negative Counterexamples 154
Sanjay Jain, Efim Kinber

Towards a Better Understanding of Incremental Learning 169
Sanjay Jain, Steffen Lange, Sandra Zilles

On Exact Learning from Random Walk . 184
Nader H. Bshouty, Iddo Bentov

Risk-Sensitive Online Learning . 199
Eyal Even-Dar, Michael Kearns, Jennifer Wortman

Leading Strategies in Competitive On-Line Prediction 214
Vladimir Vovk

Hannan Consistency in On-Line Learning in Case of Unbounded Losses
Under Partial Monitoring . 229

Chamy Allenberg, Peter Auer, László Györfi, György Ottucsák

General Discounting Versus Average Reward . 244
Marcus Hutter

The Missing Consistency Theorem for Bayesian Learning: Stochastic
Model Selection . 259

Jan Poland

Is There an Elegant Universal Theory of Prediction? 274
Shane Legg

Learning Linearly Separable Languages . 288
Leonid Kontorovich, Corinna Cortes, Mehryar Mohri

Smooth Boosting Using an Information-Based Criterion 304
Kohei Hatano

Table of Contents XIII

Large-Margin Thresholded Ensembles for Ordinal Regression: Theory
and Practice . 319

Hsuan-Tien Lin, Ling Li

Asymptotic Learnability of Reinforcement Problems with Arbitrary
Dependence . 334

Daniil Ryabko, Marcus Hutter

Probabilistic Generalization of Simple Grammars and Its Application
to Reinforcement Learning . 348

Takeshi Shibata, Ryo Yoshinaka, Takashi Chikayama

Unsupervised Slow Subspace-Learning from Stationary Processes 363
Andreas Maurer

Learning-Related Complexity of Linear Ranking Functions 378
Atsuyoshi Nakamura

Author Index . 393

Editors’ Introduction

Jose L. Balcázar, Philip M. Long, and Frank Stephan

The conference “Algorithmic Learning Theory 2006” is dedicated to studies of
learning from a mathematical and algorithmic perspective. Researchers consider
various abstract models of the problem of learning and investigate how the learn-
ing goal in such a setting can be formulated and achieved. These models describe
ways to define

– the goal of learning,
– how the learner retrieves information about its environment,
– how to form of the learner’s models of the world (in some cases).

Retrieving information is in some models is passive where the learner just views
a stream of data. In other models, the learner is more active, asking questions
or learning from its actions. Besides explicit formulation of hypotheses in an
abstract language with respect to some indexing system, there are also more
implicit methods like making predictions according to the current hypothesis
on some arguments which then are evaluated with respect to their correctness
and wrong predictions (coming from wrong hypotheses) incur some loss on the
learner. In the following, a more detailed introduction is given to the five invited
talks and then to the regular contributions.

Gunnar Rätsch works on boosting and support vector machines. His is also
interested in online-learning, optimisation theory, new inference principles and
new types of machine learning problems. He also applies his results to real word
problems from computational biology and chemistry. In his invited talk for ALT
2006, Gunnar spoke about using boosting techniques to solve semi-infinite linear
programs, which can be used to address a wide variety of learning problems,
including learning to make complex predictions.

Carole Goble works on the World-Wide Web, particularly the Semantic Web
and Electronic Science / Grids. As the name suggests, the Semantic Web aims to
facilitate the expression and use of meaning on the World-Wide Web. Electronic
Science is scientific investigation in which groups are distributed globally. In her
invited lecture for DS 2006, Garole Goble presented these two areas and laid out
why these two areas depend on each other.

Hans Ulrich Simon studies the complexity of learning, that is, how much of re-
sources of various types are needed for solving theoretically formulated learning
problems. In particular, he has worked on query-learning and statistical models.
In his invited talk for ALT 2006, Hans Ulrich Simon described work on the learn-
ability of function classes using statistical queries, in which an algorithm inter-
acts with the environment by asking for estimates of probabilities. The model is
motivated because previous work had shown that algorithms that obey such a re-
striction can be made robust against certain kinds of noise. For finite classes, Hans
described connections between the complexity of learning with statistical queries

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J.L. Balcázar, P.M. Long, and F. Stephan

and the structure of the matrix of correlations between pairs of possible target
functions. The structure is captured by the spectral norm of this matrix.

Padhraic Smyth works on all aspects linked to large scale databases as they
are found in many applications. To extract and retrieve useful information from
such large data bases is an important practical problem. For that reason, his
research focusses on using large databases to build descriptive models that are
both accurate and understandable. His invited talk for DS 2006 is on data-driven
discovery with statistical approaches. Generative probabilistic models have al-
ready been proven a useful framework in machine learning from scientific data
and the key ideas of this research include (a) representing complex stochastic
phenomena using the structured language of graphical models, (b) using latent
(hidden) variables for inference about unobserved phenomena and (c) leveraging
Bayesian ideas for learning and predicting. Padhraic Smyth began his talk with
a brief review of learning from data with hidden variables and then discussed
some recent work in this area.

Andrew Y. Ng has research interests in machine learning and pattern recogni-
tion, statistical artificial intelligence, reinforcement learning and adaptive control
algorithms for text and web data processing. He presented the joint invited talk
of ALT 2006 and DS 2006. His talk was on algorithms for control that learn
by observing the behaviors of competent agents, rather than through trial and
error, the traditional reinforcement learning approach.

The Presentation for the E. M. Gold Award. The first contributed talk presented
at ALT 2006 was the talk “Learning unions of ω(1)-dimensional rectangles” by
Alp Atici and Rocco Servedio for which the first author received the E. M. Gold
Award, as the program committee felt it was the best contribution submitted
to ALT 2006 which is co-authored by a student. Atici and Servedio study the
learnability of unions of rectangles over {0, 1, . . . , b−1}n in dependence of b and
n. They give algorithms polynomial in n and log b to learn concepts which are
the majority of polynomially many or the union of polylogarithmically many
rectangles of dimension a bit below log(n log b) and log2(n log b), respectively.

Query Learning. Query Learning is a learning model where a learner or pupil
asks a teacher questions about the concept to be learned. One important compo-
nent of this model is a formal query language used during the learning process;
the teacher has to answer every query posed in this language correctly. In this
model, the complexity of a learning problem is the maximum number of queries
needed by the best learning algorithm provided that the answers of the teacher
meet the given specifications; however the teacher himself can be adversary in
the sense that he can make the learner to learn as slow as possible as long as he
does not violate the constraints. In some settings, also probabilistic teachers are
considered instead of adversarial ones.

Nader H. Bshouty and Ehab Wattad investigate the question of how to learn
halfspaces with random consistent hypothesis. In their model, the learner com-
bines in each round several randomly selected halfspaces consistent with all data
seen so far by majority vote to one object and then queries the teacher whether

Editors’ Introduction 3

these objects are correct. If so, the learner has succeeded; otherwise the teacher
returns a counterexample where the hypothesis and the concept to be learnt
disagree. In addition to the teacher, the learner has access to a random oracle
returning half spaces consistent with the counterexamples seen so far. The au-
thors show that this algorithm needs roughly only two thirds as many queries to
the teacher as the best known previous algorithm working with single halfspaces
as hypotheseses space.

Matti Kääriäinen deals with the setting where the learner receives mostly
unlabeled data, but can actively ask a teacher to label some of the data. Most
previous work on this topic has concerned the realizable case, in which some
member of a concept class achieves perfect accuracy. Kääriäinen considers the
effects of relaxing this constraint in different ways on what can be proved about
active learning algorithms.

Jorge Castro extends the setting of exact learning with queries into the world
of quantum mechanics. He obtains counterparts of a number of results on exact
learning; the new results hold for algorithms that can ask queries that exploit
quantum effects.

The complexity of teaching. Learning and teaching are viewing the learning
process from two sides. While learning mainly focusses on the aspect of how to
extract information from the teacher, teaching focusses on the question of how
to help a pupil to learn fast; in the most pessimistic models, the teacher must
force learning. In this model it can be more interesting to consider randomized
or adversarial learners than cooperative ones; a teacher and a cooperative pupil
might agree on some coding which permits rapid learning success. Nevertheless,
the learner should have some type of consistency constraint since otherwise the
teacher cannot force the learner to update wrong hypotheses.

Frank Balbach and Thomas Zeugmann consider in their paper a setting where
the learning task consists only of finitely many concepts and the learner keeps
any hypothesis until it becomes inconsistent with the current datum presented
by the teacher; at that moment the learner revises the hypothesis to a new one
chosen from all consistent hypothesis at random with respect to the uniform
distribution. The authors show that it is NP-hard to find out whether a good
teacher might force the learners to learn a given polynomial-sized class in a given
time with high probability. Furthermore, the choice of the sequence on which the
learners would succeed is hard; as otherwise one could simulate the learners on
this sequence and retrieve their expected behaviour from that knowledge.

Inductive Inference and its complexity. Inductive inference is the learning-theo-
retic counterpart to recursion theory and studies the learnability of classes of re-
cursive or recursively enumerable sets in the limit. Gold’s fundamental paradigm
is that such a class is given and that the learner sees an infinite sequence in arbi-
trary, perhaps adversary order containing all the elements of the set but nothing
else except perhaps pause symbols. From these data and some implicit know-
ledge about the class the learner makes a finite sequence of conjectures such that
the last one is an index for the set to be learned, that is, an algorithm which

4 J.L. Balcázar, P.M. Long, and F. Stephan

enumerates the members of the given set. Gold showed already that the class of
all recursively enumerable sets is not learnable and since then many variants of
his basic model have been addressed, which mainly tried to capture not only the
learning process in principle but also its complexity. How many mind changes
are needed, how much memory of data observed so far has to be kept, what
types of revisions of the previous hypothesis to the current one is needed? An
example for such an additional constraint is that some interesting classes but not
all learnable ones can be identified by learners which never output a conjecture
which is a proper subset of some previous conjecture.

Stephen Fenner and William Gasarch dedicated their paper to a specific learn-
ing problem, namely, given a language A find the minimum-state deterministic
finite automaton accepting the language SUBSEQ(A) which consists of all sub-
strings of strings contained in A; this language is always regular and thus the
corresponding automaton exists. In their approach, the data is given as an infor-
mant which reveals not only the members of A but also the nonmembers of A.
Nevertheless, SUBSEQ(A) can only be learned for restrictive classes of sets A
like the class of all finite or the class of all regular sets. If the class is sufficiently
rich, learning fails. For example there is no learner which learns SUBSEQ(A)
for all polynomial time computable sets A. They show that for every recursive
ordinal α there is a class such that one can learn SUBSEQ(A) from any given A
in this class with α mind changes but not with β mind changes for any β < α.

Matthew de Brecht and Akihiro Yamamoto show in their paper that the class
of unbounded unions of languages of regular patterns with constant segment
length bound is inferable from positive data with an ordinal mind change bound.
The authors give depending on the length of the constant segments considered
and the size of the alphabet bounds which are always between the ordinals ωω

and ωωω

. The authors claim that their class is the first natural class (besides
those classes as in the previous paper obtained by coding ordinals) for which
the mind change complexity is an ordinal beyond ωω. The authors discover that
there is a link from their topic to proof theory.

Sanjay Jain and Efim Kinber contributed to ALT 2006 two joint papers. In
their first paper they deal with the following requirement: If a a learner does not
see a full text T of a language L to be learnt but just a text of some subset, then
it should still converge to some hypothesis which is a superset of the content of
the text T . There are several variants considered with respect how the language
We generated by the hypothesis relates to L: in the first variant, We ⊆ L, in
the second variant, We ⊆ L′ for some class L′ in the class C of languages to
be learnt; in the third variant, We ∈ C. It is shown that these three models are
different and it is characterised when a uniformly recursive class of languages is
learnable under one of these criteria.

Sanjay Jain and Efim Kinber consider in their second paper iterative learning
where the learner reads one by one the data and either ignores it or updates the
current hypothesis to a new one which only depends on the previous hypothesis
and the current datum. The authors extend in their work this model such that
they permit the learner to test its current hypothesis with a teacher by a subset

Editors’ Introduction 5

query and to use the negative information arising from the counterexample for
the case that they are wrong. The authors consider three variants of their model
with respect to the choice of the counterexample by the teacher: whether it is
the least negative counterexample, bounded by the maximum size of input seen
so far or just arbitrary. The authors compare these three notions with each other
and also with other important models from the field of inductive inference.

Sanjay Jain, Steffen Lange and Sandra Zilles study incremental, that is, iter-
ative learning from either positive data only or from positive and negative data.
They focus on natural requirements such as conservativeness and consistency.
Conservativeness requires that whenever the learner makes a mind change it has
already seen a counterexample to this hypothesis. Consistency requires that the
learner always outputs a hypothesis which generates all data seen so far and
perhaps also some more. There are several variants of these requirements, for
example with respect to the question what the learer is permitted or not per-
mitted to do with data not coming from any language to be learnt. The authors
study how these versions relate to iterative learning.

Online learning. The difference between online and offline learning is that the
online learner has to react to data immediately while the offline learner reads
all the data and then comes up with a programme for the function. The most
popular online learning model can be viewed as a prediction game to learn a
function f : in each of a series of rounds, the learner encounters an item x; the
learner makes a prediction y for the value f(x); the learner discovers the true
value of f(x). For each wrong prediction, the learner might suffer some loss. The
overall goal is keep the total loss small.

In many settings of online learning, there is already a pool of experts whose
advice (predictions) are heard by the learner before making the prediction. The
learner takes this advice into account and also collects statistics on the realiabil-
ity of the various experts. It is often advisible to combine the expert predictions,
e.g. through some kind of weighted voted, rather than to greedily follow the ex-
pert that appears to be best at a given time. Evaluating and combining experts
has become a discipline on its own inside the community of online learning.

Nader H. Bshouty and Iddo Bentov focus on the question of the dependence
of the performance of a prediction algorithm on the way the data is presented:
does the data where the learner has to make a prediction for a Boolean function
come adversarily, from a uniform distribution or from a random walk? The au-
thors consider a few particular exact learning models based on a random walk
stochastic process. Such models are more restricted than the well known general
exact learning models. They give positive and negative results as to whether
learning in these particular models is easier than in the general learning models.

Eyal Even-Dar, Michael Kearns and Jennifer Wortman want to incorporate
explicit risk considerations into standard models of worst-case online learning:
they want to combine the forecasts of the experts not only with respect to the
expected rewards but also by taking into account the risk in order to obtain
the best trade-off between these two parameters. They consider two common
measures balancing returns and risk: the Sharpe ratio and the mean-variance

6 J.L. Balcázar, P.M. Long, and F. Stephan

criterion of Markowitz. It turns out to be impossible to build no-regret algorithms
under these measures. But the authors show that the algorithm of Cesa-Bianchi,
Mansour and Stoltz achieves nontrivial performance when a modified risk-return
measure is used.

Vladimir Vovk considers the experts as given by a pool of prediction strategies
represented as functions in a normed function class. Considering mostly those
strategies whose norm is not too large, it is well known that there is a “master
prediction strategy” that performs almost as well as all of these strategies. The
author constructs a “leading prediction strategy” which even serves as a standard
for the prediction strategies in the pool: each of them suffers a small loss to the
degree that its predictions resemble the leading stategy’s prediction and only
those strategies are successful which copycat it. This result is first given for
quadratic loss functions and later extended to other loss functions like Bregman
divergences.

Chamy Allenberg, Peter Auer, László Györfi and György Ottucsák study
the sequential prediction problem of combining expert advice. They consider
a multi-round scenario and unbounded loss where the aim of the learner is to
lose on long term in each round not more than the best expert. Furthermore,
the feedback received by the learner is not complete. Such a scenario is called
“partial monitoring” and the learner is informed about the performance of the
expert it wants to track only with a certain probability; the scenario is the
combination of the label efficient and multi-armed bandit problem. The authors
obtain for bounded and unbounded losses the following results. In the case of
bounded losses, the authors develop an algorithm whose expected regret is more
or less the square root of the loss of the best expert. In the case of unbounded
losses, the authors’ algorithm achieves Hannan consistency, in dependence of the
average over the squared loss of all experts.

Forecasting. The next papers address general questions similar to those in online
learning. For example, how much rewards can a forecaster receive in the limit
or how can Solomonoff’s nonrecursive forecaster be approximated? The settings
considered include predictions of values of functions from N to N by determin-
istic machines as well as probabilistic forcasters dealing with functions of finite
domains.

Marcus Hutter addresses mainly the question what can be said about the
expected rewards on the long run. As they are less and less secure to be obtained,
the author introduces some discounting factors for future rewards. He compares
the average reward U received in the first m rounds with the discounted sum over
all possible future rewards from some round k onwards. The author considers
arbitrary discount and reward sequences; that is, the discounts need not to be
geometric and the environments do not need to be Markov decision processes.
He shows that the limits of U for m→∞ and V for k →∞ are equal whenever
both limits exist. Indeed it can happen that only one limit exists or even none.
Therefore, the author gives a criterion such that this criterion and the existence
of the limit of U imply the existence of the limit of V . The author also provides
such a criterion for the reverse implication.

Editors’ Introduction 7

Jan Poland investigates stochastic model selection. In particular he is in-
terested in the use of the posterior (as used in Bayes’ rule) for future predic-
tions. There are three principle ways on how to do this which the author called
“marginalization (integration over the hypotheses with respect to the poste-
rior)”, “MAP (taking the a posteriori most probable hypothesis)” and “stochas-
tic model selection (selecting a hypothesis at random according to the posterior
distribution)”. For his work, the author makes two assumptions: that the hy-
pothesis class is countable and that it contains the data generating the distribu-
tion. For the first two methods mentioned by the author (marginalization and
MAP), strong consistency theorems are already known; these theorems guaran-
tee almost sure convergence of the predictions to the truth and give bounds on
the loss. The corresponding result was missing for the third method (stochastic
model selection) and the author closes this gap.

Shane Legg dedicates his work to the question of how to overcome the principle
problem, that Solomonoff’s inductive learning model is not computable and thus
not usable in the practice. Indeed people have tried from time to time to modify
and weaken Solomonoff’s rule such that one obtains general and powerful theories
of prediction which are computable. Such algorithms exist indeed. The author
analyses the Kolmogorov complexity of sequences and shows that the minimum
Kolmogorov complexity of some recursive sequence not predicted by a predictor
is approximately a lower bound for the Kolmogorov complexity of the predictor
itself.

Boosting, Support Vector Machines and Kernel Methods. The next papers deal
with specific algorithms or methods of learning. Support vector machines can
be thought of as conducting linear classification using a large, even infinite,
collection of features that are computed as a function of the raw inputs. A kernel
provides inner products in the derived feature space, so efficiently computable
kernels are useful for learning. Boosting is a method to improve a weak learner
to a stronger one by identifying a collection of weak hypotheses that complement
one another; this is often accomplished by training weak learners on data that
has been reweighted to assign higher priority to certain examples.

Leonid Kontorovich, Corinna Cortes and Mehryar Mohri provide an em-
bedding into feature space for which all members of the previously identified
and expressive class of piecewise-testable languages are linearly separable. They
also show that the kernel associated with this embedding can be computed in
quadratic time.

Kohei Hatano investigates smooth boosting. Smooth boosting algorithms obey
a constraint that they do not change the weight of examples by much; these have
been shown to have a number of advantages. At the same time, a refinement of
AdaBoost called InfoBoost, which takes a more detailed account of the strengths
of the weak learners, has also been shown to have advantages. The author de-
velops a new algorithm, GiniBoost, which incorporates both ideas. He provides
a theoretical analysis and also adapts GiniBoost to the filtering framework.

Hsuan-Tien Lin and Ling Li investigate ordinal regression. This is a type of
multiclass classification in which the classes are totally ordered (e.g. “one star,

8 J.L. Balcázar, P.M. Long, and F. Stephan

two stars, three stars,...”). The authors improve the theoretical treatment of
this subject and construct two ORBoost algorithms which they compare with
an adapted version of the algorithm RankBoost of Freund, Iyer, Shapire and
Singer. Experiments were carried out to compare the two ORBoost algorithms
with RankBoost, AdaBoost and support vector machines.

Reinforcement learning. In reinforcement learning, an agent can accrue immedi-
ate costs or benefits from its actions, but its actions also affect the environment,
which can impact its prospects for long-term reward. One important effect is
that, often, an agent only learns about actions that it takes, and, in constrast
with other learning settings, not about actions that it could have taken.

Daniil Ryabko and Marcus Hutter consider reinforcement learning in the con-
text where observations can have any form of stochastic dependence on past
observations and actions. Such environments may be more general than Markov
decision processes. The agent knows that its environment belongs to some given
family of countably many environments, but the agent does not know in which
of these environments it is. The agent tries – as usual – to achieve the best
possible asymptotic reward. The authors study when there is an agent achieving
asymptotically the best possible reward for any environment in the class and
give some sufficient conditions on the class for the existence of such an agent.

Takeshi Shibata, Ryo Yoshinaka and Takashi Chikayama extend recent work
on the learnability from positive data of some non-regular subclasses of context-
free grammars to probabilistic languages. The authors introduce a new subclass
of the simple grammars, called unifiable simple grammars. This is a superclass
of the right-unique simple grammars, which Ryo Yoshinakai showed to be effe-
ciently learnable from positive data in previous work. The authors show that the
right-unique simple grammars are unifiable within their class of unifiable sim-
ple grammars. Furthermore, they generalise finite Markov decision processes to
simple context-free decision processes. The authors apply their results on right-
unique simple grammars and propose a reinforcement learning method on simple
context-free decision proceeses.

Statistical Learning. Supervised learning means that the learner receives pairs
(x0, y0), (x1, y1), . . . of items and their classifications. In the case of unsupervised
learning, class designations are not provided. Nevertheless, in certain cases, it is
still possible to extract from the distribution of the xn useful information which
either permits to reconstruct the yn or to get information which is almost as
useful as the original values yn. Another field of learning is the construction of
ranking functions: search machines like Google or Yahoo! must not only find on
the internet the pages matching the requests of the users but also put them into
an order such that those pages which the user searches are among the first ones
displayed. Many of these ranking functions are not explicitly constructed but
learned by analyzing the user behaviour, for example, by tracking down which
links are accessed by the user and which not.

Andreas Maurer proposes a method of unsupervised learning from processes
which are stationary and vector-valued. The learning method selects a low-

Editors’ Introduction 9

dimensional subspace and tries to keep the data-variance high and the variance of
the velocity vector low. The idea behind this is to make use of short-time depen-
dencies of the process. In the theoretical part of the paper, the author obtains for
absolutely regular processes error bounds which depend on the β-mixing coeffi-
cients and the consistency. The experimental part is done with image processing
that the algorithm can learn feature maps which are geometrically invariant.

Atsuyoshi Nakamura studies the complexity of the class C of ranking functions
which split the n-dimensional Euclidean space via k−1 parallel hyperplains into
subsets mapped to 1, 2, . . . , k, respectively. He shows that the graph dimension
of C is Θ(n + k), which is considerably smaller than the graph dimension of the
corresponding decision list problem. The importance of the graph dimension is
that it can be translated into an upper bound of the number of examples needed
in PAC learning. The author also adapts his technique to show a risk bound for
learning C.

Solving Semi-infinite Linear Programs Using
Boosting-Like Methods

Gunnar Rätsch

Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen
Gunnar.Raetsch@tuebingen.mpg.de
http://www.fml.mpg.de/~raetsch

Linear optimization problems (LPs) with a very large or even infinite number
of constraints frequently appear in many forms in machine learning. A linear
program with m constraints can be written as

min
x∈Pn

c�x

with a�
j x ≤ bj ∀i = 1, . . . ,m,

where I assume for simplicity that the domain of x is the n dimensional proba-
bility simplex Pn. Optimization problems with an infinite number of constraints
of the form a�

j x ≤ bj, for all j ∈ J , are called semi-infinite, when the index set J
has infinitely many elements, e.g. J = R. In the finite case the constraints can be
described by a matrix with m rows and n columns that can be used to directly
solve the LP. In semi-infinite linear programs (SILPs) the constraints are often
given in a functional form depending on j or implicitly defined, for instance by
the outcome of another algorithm.

In this work I consider several examples from machine learning where large LPs
need to be solved. An important case is boosting – a method for combining clas-
sifiers in order to improve the accuracy (see [1] and references therein). The most
well-known instance is AdaBoost [2]. Under certain assumptions it finds a sepa-
rating hyperplane in an infinite dimensional feature space with a large margin,
which amounts to solving a semi-infinite linear program. The algorithms that I
will discuss to solve the SILPs have their roots in the AdaBoost algorithm. The
second problem is the one of learning to predict structured outputs, which can be
understood as a multi-class classification problem with a large number of classes.
Here, every class and example generate a constraint leading to a huge optimiza-
tion problem [3]. Such problems appear for instance in natural language process-
ing, speech recognition as well as gene structure prediction [4]. Finally, I consider
the case of learning the optimal convex combination of kernels for support vector
machines [5, 6]. I show that it can be reduced to a semi-infinite linear program [7]
that is equivalent to a semi-definite programming formulation proposed in [8].

I will review several methods to solve such optimization problems, while mainly
focusing on three algorithms related to boosting: LPBoost, AdaBoost∗ and To-
talBoost. They work by iteratively selecting violated constraints while refining
the solution of the SILP. The selection of violated constraints is done in a prob-
lem dependent manner: a so-called base learning algorithm is employed in boost-
ing, dynamic programming is applied for structured output learning and a single

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 10–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Solving Semi-infinite Linear Programs Using Boosting-Like Methods 11

kernel support vector machine is used for multiple kernel learning. The main dif-
ference between optimization strategies is how they determine intermediate solu-
tions. The first and conceptually simplest algorithm is LPBoost [9] and works by
iteratively adding violated constraints to a restricted LP. The algorithm is known
to converge [10, 11, 12] under mild assumptions but no convergence rates could be
proven. The second algorithm, AdaBoost∗ [13], is closely related to AdaBoost and
works by multiplicatively updating the iterate based on the violated constraint.
It was shown that this algorithm solves the problem with accuracy ε in at most
�2 log(n)/ε2	 iterations. However, it turns out that LPBoost, which does not come
with an iteration bound, is considerably faster than AdaBoost∗ in practice. We
have therefore worked on a new algorithm, called TotalBoost [14], that combines
the advantages of both strategies: empirically it is at least as fast as LPBoost and
it comes with the same convergence rates as AdaBoost∗.

References

1. R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendel-
son and A. Smola, editors, Advanced Lectures on Machine Learning, LNCS, pages
119–184. Springer, 2003.

2. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

3. Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector
machines. In Proc. ICML’03, pages 3–10. AAAI Press, 2003.

4. G. Rätsch, S. Sonnenburg, J. Srinivasan, H. Witte, K.-R. Müller, R. Sommer, and
B. Schölkopf. Improving the C. elegans genome annotation using machine learning.
PLoS Computational Biology, 2006. Under revision.

5. C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273–
297, 1995.

6. G. Lanckriet, N. Cristianini, L. Ghaoui, P. Bartlett, and M. Jordan. Learning
the kernel matrix with semidefinite programming. Journal of Machine Learning
Research, 5:27–72, 2004.

7. S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel
learning. Journal of Machine Learning Research, pages 1531–1565, July 2006.

8. F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and
the SMO algorithm. In C. E. Brodley, editor, Proc. ICML’04. ACM, 2004.

9. A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via
column generation. Machine Learning, 46:225–254, 2002.

10. R. Hettich and K.O. Kortanek. Semi-infinite programming: Theory, methods and
applications. SIAM Review, 3:380–429, September 1993.

11. G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite
and finite hypothesis spaces. Machine Learning, 48(1-3):193–221, 2002.

12. G. Rätsch. Robust Boosting via Convex Optimization. PhD thesis, University of
Potsdam, Neues Palais 10, 14469 Potsdam, Germany, October 2001.

13. G. Rätsch and M.K. Warmuth. Efficient margin maximization with boosting.
Journal of Machine Learning Research, 6:2131–2152, 2005.

14. M.K. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms
that maximize the margin. In W. Cohen and A. Moore, editors, Proc. ICML’06,
pages 1001–1008. ACM Press, 2006.

e-Science and the Semantic Web: A Symbiotic
Relationship

Carole Goble1, Oscar Corcho1, Pinar Alper1, and David De Roure2

1 School of Computer Science
The University of Manchester

Manchester M13 9PL, UK
{carole, ocorcho, penpecip}@cs.man.ac.uk
2 School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ, UK
dder@ecs.soton.ac.uk

e-Science is scientific investigation performed through distributed global collabo-
rations between scientists and their resources, and the computing infrastructure
that enables this [4]. Scientific progress increasingly depends on pooling know-
how and results; making connections between ideas, people, and data; and finding
and reusing knowledge and resources generated by others in perhaps unintended
ways. It is about harvesting and harnessing the ”collective intelligence” of the
scientific community. The Semantic Web is an extension of the current Web in
which information is given well-defined meaning to facilitate sharing and reuse,
better enabling computers and people to work in cooperation [1]. Applying the
Semantic Web paradigm to e-Science [3] has the potential to bring significant
benefits to scientific discovery [2]. We identify the benefits of lightweight and
heavyweight approaches, based on our experiences in the Life Sciences.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

2. C. Goble. Using the semantic web for e-science: inspiration, incubation, irritation.
4th International Semantic Web Conference, 2005.

3. J. Hendler. Science and the semantic web. Science, 299:520–521, 2003.
4. T. Hey. and A.E. Trefethen. Cyberinfrastructure for e-science. Science,

308(5723):817–821, 2005.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, p. 12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Spectral Norm in Learning Theory:
Some Selected Topics�

Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
simon@lmi.rub.de

Abstract. In this paper, we review some known results that relate the
statistical query complexity of a concept class to the spectral norm of its
correlation matrix. Since spectral norms are widely used in various other
areas, we are then able to put statistical query complexity in a broader
context. We briefly describe some non-trivial connections to (seemingly)
different topics in learning theory, complexity theory, and cryptography.
A connection to the so-called Hidden Number Problem, which plays an
important role for proving bit-security of cryptographic functions, will
be discussed in somewhat more detail.

1 Introduction

Kearns’ Statistical Query (SQ) model [7] is an elegant abstraction from Valiant’s
PAC learning model [14].1 In this model, instead of having direct access to
random examples (as in the PAC learning model) the learner obtains information
about random examples via an oracle that provides estimates of various statistics
about the unknown concept. Kearns showed that any learning algorithm that is
successful in the SQ model can be converted, without much loss of efficiency, into
a learning algorithm that is successful in the PAC learning model despite noise
uniformly applied to the class labels of the examples. In the same paper where
Kearns showed that SQ learnability implies noise-tolerant PAC learnability, he
developed SQ algorithms for almost all function classes known to be efficiently
learnable in the PAC learning model. This had raised the question of whether
any concept class that is efficiently learnable by a noise-tolerant learner in the
PAC learning model might already be efficiently learnable in the SQ model. This
question was (at least partially) answered to the negative by Blum, Kalai, and
Wasserman [3] who presented a concept class that has an efficient noise-tolerant2

PAC learner but (provably) has no efficient SQ learner. However, classes that
distinguish between the model of noise-tolerant PAC learning and SQ learning
� This work was supported in part by the IST Programme of the European Commu-

nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

1 The model of “Learning by Distances” [1] seems to be equivalent to the SQ model.
For our purpose, the notation within the SQ model is more convenient.

2 For noise rate bounded away from 1/2.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 13–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 H.U. Simon

seem to be extremely rare. Thus, the non-existence of an efficient SQ learner
often indicates that finding an efficient and noise-tolerant PAC learner might
also be hard to achieve.

Information-theoretic lower bounds in the PAC model are stated in terms of
the VC-dimension. Information-theoretic lower bounds in the in the SQ model
have a much different (more algebraic) flavor. Blum et al. [2] have shown that,
roughly speaking, the number of statistical queries being necessary and suffi-
cient for weakly learning a concept class is polynomially related to the largest
number of pairwise “almost orthogonal” concepts from this class (the so-called
SQ Dimension). Ke Yang [17] presented an alternative (stronger but polynomi-
ally equivalent) lower bound on the number of statistical queries. It is stated in
terms of the eigenvalues of the correlation matrix C associated with the concept
class. A simplified variant of this lower bound is stated in terms of the spectral
norm (= largest eigenvalue) of C. There exist classes which are weakly learnable
in the SQ model, but not strongly. Ke Yang [16, 17] invented a technique that
allows to prove statements of this type (at least occasionally for specific classes).
A variant of this technique [18] yields lower bounds in the so-called model of SQ
Sampling (related to quantum computing). In this model, the goal of the learner
is to find a positive example of the unknown target concept (again by means of
statistical queries).

In the first part of this paper (up to section 5), we partially review the work
about SQ learning in [2, 16, 17, 18]. In order to present the results in the tech-
nically simplest fashion, we introduce the Correlation Query (CQ) model that
replaces statistical queries by correlation queries. Correlation queries deal with
predicates on instances (whereas statistical queries deal with predicates on la-
beled instances). Upon a correlation query, the CQ oracle will return an estimate
for the correlation between this predicate and the target concept. While the SQ
and CQ oracle turn out to be equivalent in a rather strong sense, the CQ model
will be much more convenient for our purposes.3

In the second part of the paper (beginning in section 6), we briefly describe
some non-trivial connections to (seemingly) different topics in learning theory,
complexity theory, and cryptography. A connection to the so-called Hidden Num-
ber Problem, which plays an important role for proving bit-security of crypto-
graphic functions, will be discussed in somewhat more detail.

2 Definitions and Notations

Concept Learning: A concept is a function f of the form f : X → {±1}. A
concept class, denoted as F , is a set of concepts. Throughout this paper, X is a
finite set called the domain. An element x ∈ X is called an instance. A labeled
instance (x, b) ∈ X ×{±1} is called an example for f if b = f(x). D : X → [0, 1]

3 The relation between statistical queries and correlation queries is implicitly contained
in some of the existing papers. But, since the equivalence is never stated explicitly,
no paper exploits the potential for possible simplification to full extent.

Spectral Norm in Learning Theory: Some Selected Topics 15

denotes a mapping that assigns probabilities to instances such that D(x) ≥ 0
for all x ∈ X and

∑
x∈X D(x) = 1. Notations PrD[·] and ED[·] refer to the

probability of an event and to the expectation of a random variable, respectively.
A function h : X → {±1} (not necessarily from F) is called a hypothesis. We
say that h is ε-accurate for f if PrD[h(x) �= f(x)] ≤ ε. Informally, the goal of a
learner for concept class F is to infer an ε-accurate hypothesis for an unknown
target concept f ∈ F from “partial information”. There must be a uniform
learning algorithm for all choices of f ∈ F and ε > 0 (and sometimes, but not in
this paper, also for all choices of D and other relevant parameters). The formal
notion of “partial information” depends on the learning model in consideration.
We assume the reader to be familiar with the PAC learning model [14] where the
information given to the learner consists of random examples for the unknown
target concept. We will be mainly concerned with the SQ model that is outlined
in the next paragraph.

Statistical Query Learning: In this model, the learner has access to random ex-
amples only indirectly through statistical queries that are answered by an oracle.
A statistical query is of the form SQ(�, τ) where � : X × {±1} → {±1} denotes
a binary predicate on labeled instances and τ > 0 is a tolerance parameter.
Upon such a query, the oracle returns a τ-approximation for ED[�(x, f(x)], i.e.,
it returns a number d that satisfies

ED[�(x, f(x)] − τ ≤ d ≤ ED[�(x, f(x)] + τ .

We briefly note that

ED[�(x, f(x)] = PrD[�(x, f(x)) = +1]− PrD[�(x, f(x)) = −1] .

We will measure the “efficiency” of the learner by the number of statistical
queries, say q, that it passes to the oracle (in the worst-case), by the smallest
tolerance parameter τ that is ever used during learning, and by the accuracy ε
of the final hypothesis. It was shown by Kearns [7] that an SQ learner can be
simulated by a noise-tolerant PAC learner that has access to poly(q, 1/τ, 1/ε)
random examples.

Incidence and Correlation Matrix: The real-valued functions on domain X form
an |X |-dimensional vector space that can be equipped with the following inner
product:

〈h1, h2〉D :=
∑
x∈X

D(x)h1(x)h2(x) = ED[h1(x)h2(x)]

With a concept class F , we associate the incidence matrix M ∈ {±1}F×X

given by M [f, x] := f(x) and the correlation matrix C ∈ [−1, 1]F×F given
by C[f1, f2] := 〈f1, f2〉D. Clearly, C is positive semidefinite. Let diag(D) ∈
[0, 1]X×X denote the matrix with values D(x) on the main diagonal and zeroes
elsewhere. Then matrices C and M satisfy the relation C = M · diag(D) ·M�.
In particular, we have C = 1

|X| ·M ·M� if D is the uniform distribution.

Warning: We will use the analogous notations (and analogous remarks are
valid) for the more general case, where F contains real-valued functions.

16 H.U. Simon

Correlation Query Learning: The definition of Correlation Query (CQ) learning
is completely analogous to the definition of SQ learning with the only difference
that we replace the SQ oracle by a CQ oracle. A correlation query is of the
form CQ(h, τ) for some function h : X → {−1, 0,+1} and τ > 0. The oracle
will return a τ -approximation of 〈h, f〉D, where (as always) f ∈ F denotes the
unknown target concept.

Warning: We will use this model (for technical reasons) also in the more general
case where F contains real-valued functions.

Lower Bounds and Adversaries: The emphasis of this paper is on lower bounds.
A well-known adversary argument for proving lower bounds is as follows. An
adversary of the learner runs the learning algorithm, waits for queries, answers
them in a malicious fashion and keeps track of the so-called version space. The
latter, by definition, consists of all target concepts being consistent with all
answers that have been returned so far to the learner. Intuitively, the adversary
tries to keep the version space as “rich” as possible in order to slow down the
progress made by the learner.
In order to make the lower bounds as strong as possible, we do not impose
unnecessary restrictions on the learner. In particular, our lower bounds will be
valid even in the following setting:

– The learner may output arbitrary functions h : X → {−1, 0,+1} as hypothe-
ses.

– The learning algorithm need not be uniform w.r.t. domain distributions
(since there is a fixed distribution D).

– The learner is already considered successful when its final hypothesis has a
significant correlation, say γ, with the target concept. Note that a hypoth-
esis whose correlation with f is γ is (1/2 − γ/2)-accurate for f , i.e., it has
advantage γ/2 over random guessing.

Notations and Facts from Matrix Theory: Although we assume some familiarity
with basic concepts from matrix theory, we provide the reader with a refreshment
of his or her memory and fix some notation. The Euclidean norm of a vector
u ∈ Rd is denoted as ‖u‖. For a matrix M , ‖M‖ denotes its spectral norm:

‖M‖ = sup
u:‖u‖≤1

‖Mu‖

It is well-known that ‖M‖ coincides with the largest singular value of M . If M
is symmetric and positive semidefinite, then the largest singular value coincides
with the largest eigenvalue. A matrix of the form M ·M� (symmetric and positive
semidefinite !) satisfies ‖M ·M�‖ = ‖M‖2. In particular, if M is an incidence
matrix for a concept class F and C = 1

|X|M ·M� is the corresponding correlation
matrix under the uniform distribution, we get the relation ‖C‖ = 1

|X|‖M‖2.

Spectral Norm in Learning Theory: Some Selected Topics 17

3 Statistical Queries Versus Correlation Queries

In this section we show that, from an information-theoretic point of view, sta-
tistical queries and correlation queries are equivalent: for any query of one kind,
there is a query of the other kind that reveals precisely the same amount of
information.

Consider a function � : X × {±1} → {±1}. It induces the following split of
the instance space:

X0(�) = {x ∈ X | �(x,+1) = �(x,−1)}
X1(�) = {x ∈ X | �(x,+1) �= �(x,−1)}

Loosely speaking, X1(�) contains the instances on which predicate � is “label-
sensitive” whereas � is insensitive to labels of instances from X0(�). With � we
associate the following function h : X → {−1, 0,+1}:

h(x) =
{

0 if x ∈ X0(�)
�(x, 1) if x ∈ X1(�)

Note that, for every x ∈ X1 and every b = ±1,

�(x, b) = b · �(x, 1) = b · h(x) .

Now ED[�(x, f(x))] can be written in terms of 〈h, f〉D as follows:

ED[�(x, f(x))] =
∑

x∈X0(�)

D(x)�(x, f(x)) +
∑

x∈X1(�)

D(x)�(x, f(x))

=
∑

x∈X0(�)

D(x)�(x, 1))

︸ ︷︷ ︸
=:k(�)

+
∑

x∈X1(�)

D(x)f(x)h(x)

= k(�) + 〈h, f〉D ,

where k(�) depends on � only (and not on the target concept f).
Notice that the mapping � �→ h is surjective since any mapping h : X →

{−1, 0,+1} has a pre-image, for instance the mapping � : X × {±1} → {±1}
given by

�(x, b) =
{

1 if h(x) = 0
bh(x) otherwise .

We conclude from these considerations, and in particular from the relation
ED[�(x, f(x))] = k(�) + 〈h, f〉D that there are mutual simulations between an
SQ-oracle and a CQ-oracle such that answers to SQ(�, τ) and to CQ(h, τ) provide
the same amount of information. Thus, we arrive at the following result:

Theorem 1. There exists an algorithm that finds a ε-accurate hypothesis for
every target concept f ∈ F by means of q statistical queries whose tolerance
parameters are lower-bounded by τ respectively if and only if there exists an
algorithm that finds a ε-accurate hypothesis for every target concept f ∈ F by
means of q correlation queries whose tolerance parameters are lower-bounded by
τ respectively.

18 H.U. Simon

4 A Lower Bound in Terms of the Spectral Norm

In the sequel, we say “function class” (as opposed to “concept class”) when we
allow real function values different from ±1.

Theorem 2 ([17]). Consider a finite function class F (with correlation matrix
C) and a learning algorithm for F in the CQ model with the following features:

– It outputs a hypothesis h satisfying 〈h, f〉D > γ, where f denotes the target
concept.

– It makes at most q statistical queries none of which uses a tolerance param-
eter smaller than τ .

Let λ1(C) ≥ · · · ≥ λ|F|(C) be the eigenvalues of C. Then,

q+1∑
i=1

λi(C) ≥ |F| ·min{γ2, τ2} . (1)

Proof. We basically present the proof of Ke Yang [17] (modulo some slight sim-
plifications resulting from the more convenient CQ model).4 Consider an adver-
sary that returns 0 upon correlation queries as long as this does not lead to an
empty version space. Choose q′ ≤ q maximal such that the first q′ queries of the
learner, say CQ(h1, τ1),CQ(h2, τ2), . . . ,CQ(hq′ , τq′), are answered 0. Let hq′+1
denote the query function of the next correlation query if q > q′, and let hq′+1
denote the final hypothesis of the learner if q = q′. Let V ⊆ F denote the version
space resulting after “queries” with query functions h1, . . . , hq′ , hq′+1. By defi-
nition of q′, V is empty if q > q′. Let Q denote the (at most) q′ + 1-dimensional
vector space spanned by h1, . . . , hq′ , hq′+1. For every function f ∈ F , the follow-
ing holds:

– If f ∈ V , then q = q′. Since hq′+1 is the final hypothesis of the learner, it
follows that 〈hq′+1, f〉D ≥ γ.

– If f /∈ V , then f was eliminated after one of the first q′ + 1 “queries”. Thus
there exists some i ∈ {1, . . . , q′ + 1} such that 〈hi, f〉D ≥ τ .

We use fQ to denote the projection of f into subspace Q and conclude that∑
f∈F

‖fQ‖2 ≥ |F| ·min{γ2, τ2} . (2)

On the other hand, it is a well-known fact from matrix theory that

∑
f∈F

‖fQ‖2 ≤
q′+1∑
i=1

λi ≤
q+1∑
i=1

λi . (3)

Solving (2) and (3) for
∑q+1

i=1 λi yields the result. ��
4 He considered only classes F with ±1-valued functions, but his argument holds in

the more general case of real-valued functions. The adversary technique applied in
the proof goes back to [2].

Spectral Norm in Learning Theory: Some Selected Topics 19

The following result is immediate from Theorem 2 and the fact that F is not
easier to learn than a subclass F ′ ⊆ F (with correlation matrix C′).

Corollary 1. The number q of queries needed to learn F in the sense of Theo-
rem 2 satisfies the following condition:

∀F ′ ⊆ F :
q+1∑
i=1

λi(C′) ≥ |F ′| ·min{γ2, τ2} .

Since the spectral norm of C, ‖C‖, coincides with the largest eigenvalue, λ1, (1)
implies the following inequality:

q ≥ |F| ·min{γ2, τ2}
‖C‖ − 1 . (4)

Define

L(F) := sup
F ′⊆F

|F ′|
‖C′‖ , (5)

where C′ denotes the correlation matrix associated with F ′. If D is the uniform
distribution on X and M ′ denotes the incidence matrix of F ′, we have ‖C′‖ =
1

|X|‖M ′‖2 and can rewrite (5) as follows:

L(F) = sup
F ′⊆F

|F ′| · |X |
‖M ′‖2 . (6)

Analogously to Corollary 1, we obtain

Corollary 2. q ≥ L(F) ·min{γ2, τ2} − 1. 5

5 Related Lower Bounds

The lower bounds from section 4 are tailored to weak learning in the SQ model.
These bounds get trivial when a class is efficiently weakly, but not strongly,
learnable. Ke Yang [16, 17] presented a technique that allows to reduce the prob-
lem of (better than weakly) learning a class consisting of “(almost) uniformly
correlated” concepts to the problem of weakly learning a corresponding class
of “(almost) uncorrelated” concepts. To the latter class, the bounds from sec-
tion 4 do apply. In this section, we present another (and even older) technique
that is slightly simpler and fits the same purpose.6 Furthermore, both techniques
(Yang’s and the technique from this section) lead to lower bounds in the so-called
SQ Sampling model.

Throughout this section, D is the uniform distribution on X (and we omit
index D in the notation of probabilities, expectations, and inner products). Con-
sider a concept class F with the following properties:
5 Even a slightly stronger bound of the form q ≥ L(F)τ 2−(τ 2/γ2) is valid (and proven

in the full paper).
6 A nice feature of Yang’s technique is that it applies even when the SQ oracle is

assumed as “honest”. We conjecture that the alternative technique (described in
this section) applies to honest oracles as well.

20 H.U. Simon

Property 1. There exists a constant 0 < ρ < 1/2 such that, for every f ∈ F ,
Pr[f(x) = 1] = ρ.

Property 2. There exists a constant s such that the matrix Ms, given by

Ms[f, x] =
{
s if f(x) = 1
−1 if f(x) = −1 ,

has pairwise orthogonal rows.

It is easy to see that s and ρ must satisfy the relation s ≥ (1 − 2ρ)/ρ. It is
furthermore easy to infer from property 1 that the constant function −1 is
positively correlated with every concept from F :

∀f ∈ F : 〈f,−1〉 = (1− ρ)− ρ = 1− 2ρ .

We will pursue the question how many queries it takes to find a hypothesis whose
correlation with the target concept is significantly greater than 1− 2ρ.

The first important observation is that we can consider Ms as the incidence
matrix of the function class Fs = {fs| f ∈ F} where fs is given by

fs(x) =
{
s if f(x) = 1
−1 if f(x) = −1 .

Since Ms has pairwise orthogonal rows and every row vector has squared Eu-
clidean length ρ|X |s2 + (1 − ρ)|X |, the correlation matrix Cs = 1

|X| ·MsM
�
s

satisfies
Cs = diag(ρs2 + 1− ρ, . . . , ρs2 + 1− ρ) .

Thus ‖Cs‖ = ρs2 + 1 − ρ. Note that Corollary 2 applies to Fs and leads to a
lower bound of the form

|F|
ρs2 + 1− ρ

min{γ2, τ2} − 1 (7)

with the usual meaning of γ and τ .
The second important observation is that the problems of learning F and

Fs by correlation queries exhibit a close relationship. For a query function g,
consider the following calculation:

E[f(x)g(x)] = E[f(x)g(x)|f(x) = 1] · ρ + E[f(x)g(x)|f(x) = −1] · (1− ρ)
= E[g(x)|f(x) = 1] · ρ− E[g(x)|f(x) = −1] · (1− ρ)

E[fs(x)g(x)] = E[g(x)|f(x) = 1] · ρs− E[g(x)|f(x) = −1] · (1− ρ)
E[g(x)] = E[g(x)|f(x) = 1] · ρ + E[g(x)|f(x) = −1] · (1− ρ)

Now an easy calculation shows that

E[f(x)g(x)] − s− 1
s + 1

E[−g] =
2

s + 1
E[fs(x)g(x)] . (8)

According to (8), the following holds:

Spectral Norm in Learning Theory: Some Selected Topics 21

Lemma 1. g has a correlation of at least α + s−1
s+1E[−g] with f iff g has a

correlation of at least s+1
2 α with fs.

Since E[−g] ≤ 1 (with equality for g = −1), we obtain

Corollary 3. If g has a correlation of at least α + s−1
s+1 with f , then g has a

correlation of at least s+1
2 α with fs.

Since the latter two results are valid for tolerance parameter τ in the role of α
and for final correlation γ in the role of α, we get

Corollary 4. The number of correlation queries (with smallest tolerance τ)
needed to achieve a correlation of at least s−1

s+1 + γ with an unknown target con-
cept from F is not smaller than the number of correlation queries (with smallest
tolerance s+1

2 τ) needed to achieve a correlation of at least s+1
2 γ with an unknown

target function from Fs.

An application of the lower bound in (7) with s+1
2 τ in the role of τ and s+1

2 γ in
the role of γ finally leads to

Corollary 5. The number of correlation queries (with smallest tolerance τ)
needed to achieve a correlation of at least s−1

s+1 +γ with an unknown target concept
from F is at least

|F|
ρs2 + 1− ρ

(s + 1)2

4
min{γ2, τ2} .

Note (s+1)2

4 min{γ2, τ2} ≤ 1 since s−1
s+1 + γ ≤ 1.

Here is a concrete example7 to which Corollary 5 applies. Remember that the
elements (projective points) of the (n− 1)-dimensional projective space over Zp

are the 1-dimensional linear subspaces of Zn
p . We will represent projective points

by elements in Zn
p . We say that a projective point Q is orthogonal to a projective

point Q′, denoted as Q ⊥ Q′, if 〈Q,Q′〉 = 0. We view the matrix M such that

M [Q,Q′] =
{

1 if Q ⊥ Q′

−1 otherwise

as the incidence matrix of a concept classORT(p, n) (over domainX =ORT(p, n)).
According to results in [11], ORT(p, n) has properties 1 and 2, where

ρ =
pn−1 − 1
pn − 1

≈ 1
p

and s =
(p− 1)pn/2−1

1 + pn/2−1 ≈ p .

Combining this with |ORT(p, n)| = pn−1
p−1 and with Corollary 5, we get

Corollary 6. The number of correlation queries (with smallest tolerance τ)
needed to achieve a correlation of at least 1 − 2 pn/2−1

pn/2+1 + γ with an unknown
target concept from F is asymptotically at least pn−2(p2/4)min{γ2, τ2}.

Note that γ ≤ 2 pn/2−1

pn/2+1 ≈ 2/p such that (p2/4)min{γ2, τ2} is asymptotically at
most 1.
7 Taken from [11] and used in connection with half-space embeddings in [6].

22 H.U. Simon

A Note on the SQ Sampling Model: A query in the SQ Sampling model has the
same form as a query in the CQ model but is answered by a τ -approximation for
E[g(x)|f(x) = 1]. In the SQ sampling model, the learner pursues the goal to find
a positive example for the unknown target concept. Blum and Yang [18] showed
that the technique of Yang from [16, 17] leads to lower bounds in the SQ sampling
model (when properly applied). The same remark is valid for the alternative
technique that we have used in this section. It can be shown that classes with
properties 1 and 2 are “hard” in the SQ Sampling model. For example, the
retrieval of a positive example for an unknown concept from ORT(p, n) requires
exponentially many queries. The corresponding results and proofs are found in
the full paper. Here, we give only the equation that plays the the same key role
for the SQ Sampling model as equation (8) for the SQ model:

E[g(x)|f(x) = 1]− 1
ρ(s + 1)

E[g] =
1

ρ(s + 1)
E[fs(x)g(x)] .

6 Characterizations of Statistical Query Learnability

As for this section, we pass to the parameterized scenario, where we consider
ensembles of domains, distributions, and concept classes, respectively:

X = (Xn)n≥1, D = (Dn)n≥1, and F = (Fn)n≥1 .

We furthermore focus on “weak polynomial” learners, i.e., the number of queries,
q, the inverse of required correlation with the target concept, 1/γ, and the inverse
of the lower bound on the tolerance parameters, 1/τ , should be bounded by a
polynomial in n, respectively.

Blum et al. [2] have shown that F has a weak polynomial learner in the
SQ model if and only if SQDim(Fn) is bounded by a polynomial in n, where
SQDim(Fn) denotes the so-called SQ dimension. In the full paper, we show that
L(Fn) is polynomially related to SQDim(Fn). Thus:

Corollary 7. The following statements are equivalent:

1. F admits a weak polynomial learner in the SQ model.
2. SQDim(Fn) is polynomially bounded in n.
3. L(Fn) is polynomially bounded in n.

We close this section by listing some rather surprising connections between SQ
learning and (seemingly) different questions in learning and complexity theory,
respectively:

Corollary 8. There is a weak polynomial SQ learner for F = (Fn)n≥1 under
the uniform distribution if at least one of the following conditions is satisfied:

– There exists a poly(n)-dimensional half-space embedding for Fn.
– There exists a half-space embedding for Fn that achieves a margin whose

inverse is polynomially bounded in n.

Spectral Norm in Learning Theory: Some Selected Topics 23

– The probabilistic communication complexity of the evaluation problem for Fn

in the unbounded error model is logarithmically bounded in n.
– The evaluation problem for Fn can be solved by a depth-2 threshold circuit

whose size and whose weights associated with nodes on the hidden layer are
polynomially bounded in n (but the weights may be arbitrary at the top gate).

Proof. It suffices to show that all conditions mentioned in the corollary will be
violated if there is no weak polynomial learner for F . According to Corollary 7,
the non-existence of a weak polynomial learner implies that L(Fn) is super-
polynomial in n. Since we assume a uniform distribution, we may apply (6) and
write L(Fn) in the form |Fn|·|Xn|

‖Mn‖2 . The proof can now be completed by calling
the following facts into mind:

– It was shown by Forster [5] that
√

|Fn|·|Xn|
‖Mn‖ is a lower bound on the smallest

dimension and on the inverse of largest margin that can be achieved by a
half-space embedding for Fn.

– It is well-known [13] that the probabilistic communication complexity in the
unbounded error model coincides (up to rounding) with the logarithm of the
smallest Euclidean dimension that allows for a half-space embedding.

– It is furthermore well-known [6] that the smallest size of a threshold circuit
(of the type described above) grows linearly with the smallest dimension
that allows for a half-space embedding. ��

7 Hardness of Learning a “Hidden Number”

In the final section, we outline a relation between learning and the concept of
bit-security in cryptography.

7.1 Hidden Number Problem and Bit Security

Let p be an n-bit prime, (Zp,+, ·) be the field of integers modulo p, (Z∗
p, ·) be

the (cyclic) group of prime residuals modulo p, and g be a generator of Z∗
p. We

will identify Zp with {0, 1, . . . , p − 1}, the smallest residuals modulo p, and Z∗
p

with {1, . . . , p− 1}.
Loosely speaking, the Hidden Number Problem (HNP) is the problem of in-

ferring a hidden number u ∈ Z∗
p by means of an oracle that provides us with

information about u · z for (known) random instances z ∈ Z∗
p.

8

In order to cast HNP as a learning problem, consider a binary predicate
B : Z∗

p → {±1}. Now we view the hidden number u ∈ Z∗
p as an unknown target

concept that assigns label B(u ·z) to instance z. We denote the resulting concept
class HNP[B] = (HNP[B]n)n≥1 where n always denotes the bit-length of prime p.

The Hidden Number Problem is closely related to the cryptographic concept of
bit security, a connection that we now outline briefly for motivational purposes.

8 Terms involving elements from Zp are always understood modulo p.

24 H.U. Simon

The Diffie-Hellman function (w.r.t. the cyclic group Z∗
p) is given by

DH(ga, gb) = gab .

It is widely believed that the evaluation of DH is computationally intractable.
Even if DH cannot be efficiently evaluated, it might still be possible to compute
some bits of information about gab. In fact, it is known that the Legendre symbol
of gab is easy to compute from p, g, pa, pb. This bit of information is therefore
“insecure”. In order to show that a particular bit of a cryptographic function G
is “secure”, one typically proves that a general efficient procedure, which reliably
predicts this bit, can be converted into an efficient procedure which evaluates
G. Everybody who believes that the evaluation problem for G is intractable is
therefore forced to believe that no such efficient procedure for the particular bit
is conceivable. The analogous remarks are valid for the security of a particular
collection of bits.9

The Hidden Number Problem was introduced by Boneh and Venkatesan [4]
as a tool for showing that the collection of

√
n unbiased most significant bits of

the Diffie-Hellman function is secure. An error in the proof from [4] was spotted
and corrected by Vasco and Shparlinski [15]. A technically simpler correction
was outlined by Nguyen and Stern [12], but they had to assume that the evalua-
tion problem for the Diffie-Hellman function remains intractable when the input
p, g, ga, gb is augmented by the prime factorization of p− 1.

Here comes the central relation [15] that helps to understand the connection
between the Hidden Number Problem and bit-security:

g(b+r)a · g(b+r)x = gab+ar+xb+xr = g(a+x)(b+r) = DH
(
ga+x, gb+r

)
(9)

Note that g(b+r)a is as hard to compute as gab whereas ga+x, gb+r are easy
to compute from input parameters ga and gb (assuming r and x are known).
Because of (9), a reliable bit predictor for B ◦DH provides us with information
about the “hidden number” g(b+r)a. If we were able to efficiently infer the hidden
number from this information, we would end up with a conversion of a bit-
predictor for DH into an efficient algorithm that computes the whole function
(thereby proving security for bit B of the Diffie-Hellman function).

As emphasized by [8], the Hidden Number Problem plays a central role for
the bit-security of a variety of cryptosystems (not just systems employing the
Diffie-Hellman function).

7.2 Hidden Number Problem and Learning

Consider a family B = (Bp) of binary predicates Bp : Z∗
p → {±1}. We say

that B distinguishes hidden numbers if there exists a polynomial P (n) such that

9 Note that the security of a collection of bits is easier to show than the security of an
individual bit because a predictor for a collection of bits is a more powerful tool for
solving the evaluation problem for G than the predictor for only one individual bit
of the collection.

Spectral Norm in Learning Theory: Some Selected Topics 25

the correlation between two different concepts u1, u2 from Z∗
p under the uniform

distribution is at most 1− 1/P (n):

Pr[B(u1 · z) = B(u2 · z)]− Pr[B(u1 · z) �= B(u2 · z)] ≤ 1− 1
P (n)

Here, z is drawn uniformly at random from Z∗
p and n denotes the bit-length of

prime p.
The proof of the following theorem strongly builds on problem reductions

performed in [15] and [12]. New is only the “compilation” in a learning-theoretic
framework.

Theorem 3. For every binary predicate B that distinguishes hidden numbers,
the following holds. If HNP[B] is properly PAC learnable under the uniform
distribution, then bit B of the Diffie-Hellman function is secure.

Proof. Consider a fixed n-bit prime p and a generator g of Z∗
p. We will show how

a PAC learner and a reliable predictor for B ◦ DH can be used to compute gab

from p, g, ga, gb and the prime factorization of p− 1:

– Select repeatedly a random element r from {0, . . . , p−2} (independent draw-
ings according to the uniform distribution) until gb+r is a generator.10

– Simulate the PAC learner, say A, for target concept ga(b+r) and for “suffi-
ciently small” parameters ε, δ. Whenever A asks for an example, temporarily
suspend the simulation and do the following:
• Select a random element x from {0, . . . , p−2} and compute ga+x = gagx

and gb+r = gbgr.
• Ask the reliable bit predictor for label b = B(DH(ga+x, gb+r)) and return

example (x, b) to the PAC learner.
Receive finally a hypothesis, say u ∈ Z∗

p, from the PAC learner.

Note that b correctly labels x w.r.t. target concept ga(b+r) because of the general
equation (9). Thus, with probability at least 1−δ, hypothesis u will be ε-accurate
for concept ga(b+r). Let P be the polynomial such that either u = ga(b+r) or the
correlation of u and ga(b+r) is bounded above by 1− 1/P (n). In the latter case,
the labels B(uz) and B(ga(b+r)z) assigned to a random instance z ∈ Z∗

p are
different with probability at least 1/(2P (n)). Choosing ε = 1/(3P (n)), we can
force the PAC learner to be probably exactly correct. Thus, with probability at
least 1 − δ, u = ga(b+r). In this case, we can retrieve gab by making use of the
equation gab = ga(b+r)(ga)−r. ��

The unbiased most significant bit is the following predicate on Z∗
p:

MSB(z) =
{

1 if p+1
2 ≤ z ≤ p− 1

0 otherwise

10 Although we do not know b, we can easily test for the generator-property thanks to
the factorization of p − 1.

26 H.U. Simon

Lemma 2 ([9]). The unbiased most significant bit distinguishes hidden numbers
in the following strong sense:

∀u1, u2 ∈ Z∗
p : u1 �= u2 ⇒ Pr[MSB(u1z) = MSB(u2z)] ≤

2
3

.

The corresponding statement for the least significant bit was proven by Kiltz
and Simon [9]. Because of MSB(x) = LSB(2x), the result carries over to the
unbiased most significant bit.

Corollary 9. If HNP[MSB] is properly PAC learnable under the uniform dis-
tribution, then the unbiased most significant bit of the Diffie-Hellman function
is secure.

To the best of our knowledge, it is not known whether HNP[MSB] is properly
PAC learnable under the uniform distribution. However, from our general lower
bound on the number of statistical queries, we can infer the following result:

Lemma 3. For every n-bit prime, L(HNP[MSB]n) = p1−o(1).

Proof. Consider the multiplication table M ∈ (Z∗
p)

(p−1)×(p−1). i.e, M [u1, u2] =
u1 · u2 ∈ Z∗

p for all u1, u2 ∈ Z∗
p. For any binary predicate B : Z∗

p → {±1}, let
B ◦M denote the matrix given by (B ◦M)[u1, u2] = B(u1 · u2). It is shown by
Kiltz and Simon (see Corollary 5.1 in [10]) that

‖B ◦M‖ = p1/2+o(1)

provided that predicate B is “balanced”. For the purpose of this paper, we do
not need to know the definition of “balanced” because it is also shown in the
appendix of [10] that every predicate that can be represented by union of o(log n)
intervals actually is balanced. Since MSB is represented by one interval, namely
{(p + 1)/2, . . . , p− 1}, it follows that

‖MSB ◦M‖ = p1/2+o(1) .

Note that MSB ◦ M is the incidence matrix for concept class HNP[MSB]n.
From (6), with the full concept class in the role of F ′, we conclude that

L(HNP[MSB]n) ≥ (p− 1) · (p− 1)
(p1/2+o(1))2

= p1−o(1) .

��

Since p ≈ 2n, we get the

Corollary 10. HNP[MSB] is not weakly polynomially learnable in the SQ model.

This result indicates that the same concept class might be hard to learn even in
the PAC learning model.

Spectral Norm in Learning Theory: Some Selected Topics 27

References

1. Shai Ben-David, Alon Itai, and Eyal Kushilevitz. Learning by distances. Informa-
tion and Computation, 117(2):240–250, 1995.

2. Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishai Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. In Proceedings of the 26th Annual Symposium on Theory
of Computing, pages 253–263, 1994.

3. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the Association on Computing
Machinery, 50(4):506–519, 2003.

4. Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most sig-
nificant bits of secret keys in Diffie-Hellman and related schemes. In Proceedings of
the Conference on Advances in Cryptology — CRYPTO ’96, pages 129–142, 1996.

5. Jürgen Forster. A linear lower bound on the unbounded error communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002.

6. Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakz-
janov, Niels Schmitt, and Hans Ulrich Simon. Relations between communication
complexity, linear arrangements, and computational complexity. In Proceedings
of the 21’st Annual Conference on the Foundations of Software Technology and
Theoretical Computer Science, pages 171–182, 2001.

7. Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal
of the Association on Computing Machinery, 45(6):983–1006, 1998.

8. Eike Kiltz. A useful primitive to prove security of every bit and about hard core
predicates and universal hash functions. In Proceedings of the 14th International
Symposium on Fundamentals of Computation Theory, pages 388–392, 2001.

9. Eike Kiltz and Hans Ulrich Simon. Unpublished Manuscript about the Hidden
Number Problem.

10. Eike Kiltz and Hans Ulrich Simon. Threshold circuit lower bounds on cryptographic
functions. Journal of Computer and System Sciences, 71(2):185–212, 2005.

11. Matthias Krause and Stephan Waack. Variation ranks of communication matrices
and lower bounds for depth two circuits having symmetric gates with unbounded
fan-in. Mathematical System Theory, 28(6):553–564, 1995.

12. Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In
Proceedings of the International Conference on Cryptography and Lattices, pages
146–180, 2001.

13. Ramamohan Paturi and Janos Simon. Probabilistic communication complexity.
Journal of Computer and System Sciences, 33(1):106–123, 1986.

14. Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

15. Maria Isabel Gonzáles Vasco and Igor E. Shparlinski. On the security of Diffie–
Hellman bits. In Proceedings of the Workshop on Cryptography and Computational
Number Theory, pages 331–342, 2000.

16. Ke Yang. On learning correlated boolean functions using statistical query. In
Proceedings of the 12th International Conference on Algorithmic Learning Theory,
pages 59–76, 2001.

17. Ke Yang. New lower bounds for statistical query learning. In Proceedings of the
15th Annual Conferene on Computational Learning Theory, pages 229–243, 2002.

18. Ke Yang and Avrim Blum. On statistical query sampling and nmr quantum com-
puting. In Proceedings of the 18th Annual Conference on Computational Complex-
ity, pages 194–208, 2003.

Data-Driven Discovery Using Probabilistic
Hidden Variable Models

Padhraic Smyth

Information and Computer Science
University of California

Irvine, CA 92697-3425, USA
smyth@ics.uci.edu

Generative probabilistic models have proven to be a very useful framework for
machine learning from scientific data. Key ideas that underlie the generative ap-
proach include (a) representing complex stochastic phenomena using the struc-
tured language of graphical models, (b) using latent (hidden) variables to make
inferences about unobserved phenomena, and (c) leveraging Bayesian ideas for
learning and prediction. This talk will begin with a brief review of learning from
data with hidden variables and then discuss some exciting recent work in this
area that has direct application to a broad range of scientific problems. A num-
ber of different scientific data sets will be used as examples to illustrate the
application of these ideas in probabilistic learning, such as time-course microar-
ray expression data, functional magnetic resonance imaging (fMRI) data of the
human brain, text documents from the biomedical literature, and sets of cyclone
trajectories.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, p. 28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reinforcement Learning and Apprenticeship
Learning for Robotic Control

Andrew Y. Ng

Computer Science Department
Stanford University
Stanford CA 94304

Many robotic control problems, such as autonomous helicopter flight, legged
robot locomotion, and autonomous driving, remain challenging even for modern
reinforcement learning algorithms. Some of the reasons for these problems being
challenging are (i) It can be hard to write down, in closed form, a formal speci-
fication of the control task (for example, what is the cost function for “driving
well”?), (ii) It is often difficult to learn a good model of the robot’s dynam-
ics, (iii) Even given a complete specification of the problem, it is often com-
putationally difficult to find good closed-loop controller for a high-dimensional,
stochastic, control task. However, when we are allowed to learn from a human
demonstration of a task—in other words, if we are in the apprenticeship learn-
ing1 setting—then a number of efficient algorithms can be used to address each
of these problems.

To motivate the first of the problems described above, consider the setting of
teaching a young adult to drive, where rather than telling the student what the
cost function is for driving, it is much easier and more natural to demonstrate
driving to them, and have them learn from the demonstration. In practical appli-
cations, it is also (perhaps surprisingly) common practice to manually tweak cost
functions until the correct behavior is obtained. Thus, we would like to devise
algorithms that can learn from a teacher’s demonstration, without needing to be
explicitly told the cost function. For example, can we “guess” the teacher’s cost
function based on the demonstration, and use that in our own learning task? Ng
and Russell [8] developed a set of inverse reinforcement learning algorithms for
guessing the teacher’s cost function. More recently, Abbeel and Ng [1] showed
that even though the teacher’s “true” cost function is ambiguous and thus can
never be recovered, it is nevertheless possible to recover a cost function that al-
lows us to learn a policy that has performance comparable to the teacher, where
here performance is as evaluated on the teacher’s unknown (and unknowable)
cost function. Thus, access to a demonstration removes the need to explicitly
write down a cost function.

A second challenge in the application of Markov decision processes (MDPs)
and reinforcement learning to robotics lies in the need to estimate the robot’s
dynamics (more formally, the state transition probabilities). In order to learn a
sufficiently rich model of the robot’s dynamics, one has to have the robot ex-
1 Also called learning by watching, imitation learning, or learning from demonstration

(e.g., [6, 4]).

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 29–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 A.Y. Ng

plore its state space and try out a variety of actions from different states, so as to
collect data for learning the dynamics. The state-of-the-art algorithm for doing
this efficiently is Kearns and Singh’s E3-algorithm [5], which repeatedly applies
an “exploration policy” to aggressively visit states whose transition dynamics
are still inaccurately modeled. While the E3 algorithm gives a polynomial time
convergence guarantee, it is unacceptable for running on most real systems. For
example, running E3 on an autonomous helicopter would require executing poli-
cies that aggressively explore different parts of the state-space, including parts
of it that would lead to crashing the helicopter. In contrast, Abbeel and Ng [2]
showed that in the apprenticeship learning setting, there is no need to explic-
itly run these dangerous exploration policies. Specifically, suppose we are given
a (polynomial length) human pilot demonstration of helicopter flight. Then, it
suffices to only repeatedly run exploitation policies that try to fly the helicopter
as well as we can, without ever explicitly taking dangerous exploration steps.
After at most a polynomial number of iterations, such a procedure will con-
verge to a controller whose performance is at least comparable to that of the
pilot demonstrator’s. [2] In other words, access to the demonstration removes
the need to explicitly carry out dangerous exploration steps.

Finally, even when the MDP is fully specified, often it still remains a compu-
tationally challenging problem to find a good controller for it. Again exploiting
the apprenticeship learning setting, Bagnell, Kakade, Ng and Schneider’s “Policy
search by dynamic programming” algorithm [3] uses knowledge of the distribu-
tion of states visited by a teacher to efficiently perform policy search, so as to
find a good control policy. (See also [7].) Informally, we can view PSDP as using
observations of the teacher to guide the search for a good controller, so that the
problem of finding a good controller is reduced to that of solving a sequence of
standard supervised learning tasks.

In summary, reinforcement learning holds great promise for a large number of
robotic control tasks, but its practical application is still sometimes challenging be-
cause of the difficulty of specifying reward functions, the difficultly of exploration,
and the computational expense of finding good policies. In this short paper, we
outlined a few ways in which apprenticeship learning can used to address some of
these challenges, both from a theoretical and from a practical point of view.

Acknowledgments

This represents joint work with Pieter Abbeel, J. Andrew Bagnell, Sham Kakade,
and Jeff Schneider.

References

1. P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning.
In Proc. ICML, 2004.

2. P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in reinforcement
learning. In Proc. ICML, 2005.

Reinforcement Learning and Apprenticeship Learning for Robotic Control 31

3. J. Andrew Bagnell, Sham Kakade, Andrew Y. Ng, and Jeff Schneider. Policy search
by dynamic programming. In NIPS 16, 2003.

4. J. Demiris and G. Hayes. A robot controller using learning by imitation, 1994.
5. Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in poly-

nomial time. Machine Learning journal, 2002.
6. Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extracting reusable

task knowledge from visual observation of human performance. T-RA, 10:799–822,
1994.

7. John Langford and Bianca Zadrozny. Relating reinforcement learning performance
to classification performance. In Proc. ICML, 2005.

8. A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In Proc.
ICML, 2000.

Learning Unions of ω(1)-Dimensional Rectangles

Alp Atıcı and Rocco A. Servedio�

Columbia University, New York, NY, USA
{atici@math, rocco@cs}.columbia.edu

Abstract. We consider the problem of learning unions of rectangles over
the domain [b]n, in the uniform distribution membership query learning
setting, where both b and n are “large”. We obtain poly(n, log b)-time
algorithms for the following classes:

– poly(n log b)-Majority of O(log(n log b)
log log(n log b))-dimensional rectangles.

– Unions of poly(log(n log b)) many rectangles with dimension
O(log2(n log b)

(log log(n log b) log log log(n log b))2).
– poly(n log b)-Majority of poly(n log b)-Or of disjoint rectangles

with dimension O(log(n log b)
log log(n log b)).

Our main algorithmic tool is an extension of Jackson’s boosting- and
Fourier-based Harmonic Sieve algorithm [13] to the domain [b]n, building
on work of Akavia et al. [1]. Other ingredients used to obtain the results
stated above are techniques from exact learning [4] and ideas from re-
cent work on learning augmented AC0 circuits [14] and on representing
Boolean functions as thresholds of parities [16].

1 Introduction

Motivation. The learnability of Boolean valued functions defined over the do-
main [b]n = {0, 1, . . . , b−1}n has long elicited interest in computational learning
theory literature. In particular, much research has been done on learning various
classes of “unions of rectangles” over [b]n (see e.g. [4, 6, 7, 10, 13, 19]), where
a rectangle is a conjunction of properties of the form “the value of attribute xi

lies in the range [αi, βi]”. One motivation for studying these classes is that they
are a natural analogue of classes of DNF (Disjunctive Normal Form) formulae
over {0, 1}n; for instance, it is easy to see that in the case b = 2 any union of s
rectangles is simply a DNF with s terms.

Since the description length of a point x ∈ [b]n is n log b bits, a natural goal in
learning functions over [b]n is to obtain algorithms which run in time poly(n log b).
Throughout the article we refer to such algorithms with poly(n log b) runtime as
efficient algorithms. In this article we give efficient algorithms which can learn
several interesting classes of unions of rectangles over [b]n in the model of uniform
distribution learning with membership queries.

Previous results. In a breakthrough result a decade ago, Jackson [13] gave the
Harmonic Sieve (HS) algorithm and proved that it can learn any s-term DNF
� Supported in part by NSF award CCF-0347282 and NSF award CCF-0523664.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 32–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Unions of ω(1)-Dimensional Rectangles 33

formula over n Boolean variables in poly(n, s) time. In fact, Jackson showed
that the algorithm can learn any s-way majority of parities in poly(n, s) time;
this is a richer set of functions which includes all s-term DNF formulae. The HS
algorithm works by boosting a Fourier-based weak learning algorithm, which is
a modified version of an earlier algorithm due to Kushilevitz and Mansour [18].

In [13] Jackson also described an extension of the HS algorithm to the domain
[b]n. His main result for [b]n is an algorithm that can learn any union of s
rectangles over [b]n in poly(sb log log b, n) time; note that this runtime is poly(n, s)
if and only if b is Θ(1) (and the runtime is clearly exponential in b for any s).

There has also been substantial work on learning various classes of unions of
rectangles over [b]n in the more demanding model of exact learning from mem-
bership and equivalence queries. Some of the subclasses of unions of rectangles
which have been considered in this setting are

The dimension of each rectangle is O(1): Beimel and Kushilevitz [4] give
an algorithm learning any union of s O(1)-dimensional rectangles over [b]n

in poly(n, s, log b) time steps, using equivalence queries only.
The number of rectangles is limited: An algorithm is given in [4] which ex-

actly learns any union of O(log n) many rectangles in poly(n, log b) time using
membership and equivalence queries. Earlier, Maass and Warmuth [19] gave
an algorithm which uses only equivalence queries and can learn any union
of O(1) rectangles in poly(n, log b) time.

The rectangles are disjoint: If no input x ∈ [b]n belongs to more than one
rectangle, then [4] can learn a union of s such rectangles in poly(n, s, log b)
time with membership and equivalence queries.

Our techniques and results. Because efficient learnability is established for
unions of O(log n) arbitrary dimensional rectangles by [4] in a more demand-
ing model, we are interested in achieving positive results when the number of
rectangles is strictly larger. Therefore all the cases we study involve at least
poly(log(n log b)) and sometimes as many as poly(n log b) rectangles.

We start by describing a new variant of the Harmonic Sieve algorithm for
learning functions defined over [b]n; we call this new algorithm the General-
ized Harmonic Sieve, or GHS. The key difference between GHS and Jackson’s
algorithm for [b]n is that whereas Jackson’s algorithm used a weak learning al-
gorithm whose runtime is poly(b), the GHS algorithm uses a poly(log b) time
weak learning algorithm described in recent work of Akavia et al. [1].

We then apply GHS to learn various classes of functions defined in terms of
“b-literals” (see Section 2 for a precise definition; roughly speaking a b-literal is
like a 1-dimensional rectangle). We first show the following result:

Theorem 1. The concept class C of s-Majority of r-Parity of b-literals
where s = poly(n log b), r = O(log(n log b)

log log(n log b)) is efficiently learnable using GHS.

Learning this class has immediate applications for our goal of “learning unions
of rectangles”; in particular, it follows that

Theorem 2. The concept class of s-Majority of r-rectangles where s =
poly(n log b), r = O(log(n log b)

log log(n log b)) is efficiently learnable using GHS.

34 A. Atıcı and R.A. Servedio

This clearly implies efficient learnability for unions (as opposed to majorities) of
s such rectangles as well.

We then employ a technique of restricting the domain [b]n to a much smaller
set and adaptively expanding this set as required. This approach was used in
the exact learning framework by Beimel and Kushilevitz [4]; by an appropriate
modification we adapt the underlying idea to the uniform distribution member-
ship query framework. Using this approach in conjunction with GHS we obtain
almost a quadratic improvement in the dimension of the rectangles if the number
of terms is guaranteed to be small:

Theorem 3. The concept class of unions of s = poly(log(n log b)) many r-
rectangles where r = O(log2(n log b)

(log log(n log b) log log log(n log b))2) is efficiently learnable via
Algorithm 1 (see Section 5).

Finally we consider the case of disjoint rectangles (also studied by [4] as men-
tioned above), and improve the depth of our circuits by 1 provided that the
rectangles connected to the same Or gate are disjoint:

Corollary 1. The concept class of s-Majority of t-Or of disjoint r-rectangles
where s, t = poly(n log b), r = O(log(n log b)

log log(n log b)) is efficiently learnable under GHS.

Organization. In Section 3 we describe the Generalized Harmonic Sieve al-
gorithm GHS which will be our main tool for learning unions of rectangles. In
Section 4 we show that s-Majority of r-Parity of b-literals is efficiently learn-
able using GHS for suitable r, s; this concept class turns out to be quite useful for
learning unions of rectangles. In Section 5 we improve over the results of Section
4 slightly if the number of terms is small, by adaptively selecting a small subset
of [b] in each dimension which is sufficient for learning, and invoke GHS over
the restricted domain. In Section 6 we explore the consequences of the results in
Sections 4 and 5 for the ultimate goal of learning unions of rectangles.

Because of space limitations some proofs are omitted; see [3] for a full version.

2 Preliminaries

The learning model. We are interested in Boolean functions defined over the
domain [b]n, where [b] = {0, 1, . . . , b−1}. We view Boolean functions as mappings
into {−1, 1} where −1 is associated with True and 1 with False.

A concept class C is a collection of classes (sets) of Boolean functions {Cn,b : n
> 0, b > 1} such that if f ∈ Cn,b then f : [b]n → {−1, 1}. Throughout this article
we view both n and b as asymptotic parameters, and our goal is to exhibit
algorithms that learn various classes Cn,b in poly(n, log b) time. We now describe
the uniform distribution membership query learning model that we will consider.

A membership oracle MEM(f) is an oracle which, when queried with input x,
outputs the label f(x) assigned by the target f to the input. Let f ∈ Cn,b be
an unknown member of the concept class and let A be a randomized learning
algorithm which takes as input accuracy and confidence parameters ε, δ and can
invoke MEM(f). We say that A learns C under the uniform distribution on [b]n

Learning Unions of ω(1)-Dimensional Rectangles 35

provided that given any 0 < ε, δ < 1 and access to MEM(f), with probability at
least 1 − δ A outputs an ε-approximating hypothesis h : [b]n → {−1, 1} (which
need not belong to C) such that Prx∈[b]n [f(x) = h(x)] ≥ 1− ε.

We are interested in computationally efficient learning algorithms. We say
that A learns C efficiently if for any target concept f ∈ Cn,b,

– A runs for at most poly(n, log b, 1/ε, log 1/δ) steps;
– Any hypothesis h that A produces can be evaluated on any x ∈ [b]n in at

most poly(n, log b, 1/ε, log 1/δ) time steps.

The functions we study. The reader might wonder which classes of Boolean
valued functions over [b]n are interesting. In this article we study classes of
functions that are defined in terms of “b-literals”; these include rectangles and
unions of rectangles over [b]n as well as other richer classes. As described below,
b-literals are a natural extension of Boolean literals to the domain [b]n.

Definition 1. A function : [b] → {−1, 1} is a basic b-literal if for some σ ∈
{−1, 1} and some α ≤ β with α, β ∈ [b] we have (x) = σ if α ≤ x ≤ β, and
(x) = −σ otherwise. A function : [b] → {−1, 1} is a b-literal if there exists a
basic b-literal ′ and some fixed z ∈ [b], gcd(z, b) = 1 such that for all x ∈ [b] we
have (x) = ′(xz mod b).

Basic b-literals are the most natural extension of Boolean literals to the domain
[b]n. General b-literals (not necessarily basic) were previously studied in [1] and
are also quite natural; for example, if b is odd then the least significant bit
function lsb(x) : [b]→ {−1, 1} (defined by lsb(x) = −1 iff x is even) is a b-literal.

Definition 2. A function f : [b]n → {−1, 1} is a k-rectangle if it is an And
of k basic b-literals 1, . . . , k over k distinct variables xi1 , . . . , xik

. If f is a k-
rectangle for some k then we may simply say that f is a rectangle. A union of
s rectangles R1, . . . , Rs is a function of the form f(x) = Ors

i=1Ri(x).

The class of unions of s rectangles over [b]n is a natural generalization of the class
of s-term DNF over {0, 1}n. Similarly Majority of Parity of basic b-literals
generalizes the class of Majority of Parity of Boolean literals, a class which
has been the subject of much research (see e.g. [13, 5, 16]).

If G is a logic gate with potentially unbounded fan-in (e.g. Majority, Par-
ity, And, etc.) we write “s-G” to indicate that the fan-in of G is restricted
to be at most s. Thus, for example, an “s-Majority of r-Parity of b-literals”
is a Majority of at most s functions g1, . . . , gs, each of which is a Parity of
at most r many b-literals. We will further assume that any two b-literals which
are inputs to the same gate depend on different variables. This is a natural re-
striction to impose in light of our ultimate goal of learning unions of rectangles.
Although our results hold without this assumption, it provides simplicity in the
presentation.

Harmonic analysis of functions over [b]n. We will make use of the Fourier
expansion of complex valued functions over [b]n.

36 A. Atıcı and R.A. Servedio

Consider f, g : [b]n → C endowed with the inner product 〈f, g〉 = E[fg] and
induced norm ‖f‖ =

√
〈f, f〉. Let ωb = e

2πi
b and for each α = (α1, . . . , αn) ∈ [b]n,

let χα : [b]n → C be defined as χα(x) = ωα1x1+···+αnxn

b . Let B denote the set of
functions B = {χα : α ∈ [b]n}. It is easy to verify the following properties:

– For each α = (α1, . . . , αn) ∈ [b]n, we have ‖χα‖ = 1.

– Elements in B are orthogonal: For α, β ∈ [b]n, 〈χα, χβ〉 =
{

1 if α = β
0 if α �= β

.

– B constitutes an orthonormal basis for all functions {f : [b]n → C} considered
as a vector space over C, so every f : [b]n → C can be expressed uniquely as
f(x) =

∑
α f̂(α)χα(x), which we refer to as the Fourier expansion or Fourier

transform of f .

The values {f̂(α) : α ∈ [b]n} are called the Fourier coefficients or the Fourier
spectrum of f . As is well known, Parseval’s Identity relates the values of the
coefficients to the values of the function:

Lemma 1 (Parseval’s Identity).
∑

α |f̂(α)|2 = E[|f |2] for any f : [b]n → C.

We write L1(f) to denote
∑

α |f̂(α)|.
Additional tools: weak hypotheses and boosting. Let f : [b]n → {−1, 1}
and D be a probability distribution over [b]n. A function g : [b]n → R is said to
be a weak hypothesis for f with advantage γ under D if ED[fg] ≥ γ.

The first boosting algorithm was described by Schapire [20] in 1990; since
then boosting has been intensively studied (see [9] for an overview). The basic
idea is that by combining a sequence of weak hypotheses h1, h2, . . . (the i-th of
which has advantage γ with respect to a carefully chosen distribution Di) it is
possible to obtain a high accuracy final hypothesis h which satisfies Pr[h(x) =
f(x)] ≥ 1−ε. The following theorem gives a precise statement of the performance
guarantees of a particular boosting algorithm, which we call Algorithm B, due
to Freund. Many similar statements are now known about a range of different
boosting algorithms but this is sufficient for our purposes.

Theorem 4 (Boosting Algorithm [8]). Suppose that Algorithm B is given:

– 0 < ε, δ < 1, and membership query access MEM(f) to f : [b]n → {−1, 1};
– access to an algorithm WL which has the following property: given a value δ′

and access to MEM(f) and to EX(f,D) (the latter is an example oracle which
generates random examples from [b]n drawn with respect to distribution D), it
constructs a weak hypothesis for f with advantage γ under D with probability
at least 1− δ′ in time polynomial in n, log b, log(1/δ′).

Then Algorithm B behaves as follows:

– It runs for S = O(log(1/ε)/γ2) stages and runs in total time polynomial in
n, log b, ε−1, γ−1, log(δ−1).

– At each stage 1 ≤ j ≤ S it constructs a distribution Dj such that L∞(Dj) <
poly(ε−1)/bn, and simulates EX(f,Dj) for WL in stage j. Moreover, there
is a “pseudo-distribution” D̃j satisfying D̃j(x) = cDj(x) for all x (where
c ∈ [1/2, 3/2] is some fixed value) such that D̃j(x) can be computed in time
polynomial in n log b for each x ∈ [b]n.

Learning Unions of ω(1)-Dimensional Rectangles 37

– It outputs a final hypothesis h = sign(h1+h2+. . .+hS) which ε-approximates
f under the uniform distribution with probability 1− δ; here hj is the output
of WL at stage j invoked with simulated access to EX(f,Dj).

We will sometimes informally refer to distributions D which satisfy the bound
L∞(D) < poly(ε−1)

bn as smooth distributions.
In order to use boosting, it must be the case that there exists a suitable weak

hypothesis with advantage γ. The “discriminator lemma” of Hajnal et al. [11]
can often be used to assert that the desired weak hypothesis exists:

Lemma 2 (The Discriminator Lemma [11]). Let H be a class of ±1-valued
functions over [b]n and let f : [b]n → {−1, 1} be expressible as f = Majority(h1,
. . . , hs) where each hi ∈ H and h1(x) + . . . + hs(x) �= 0 for all x. Then for any
distribution D over [b]n there is some hi such that |ED[fhi]| ≥ 1/s.

3 The Generalized Harmonic Sieve Algorithm

In this section our goal is to describe a variant of Jackson’s Harmonic Sieve
Algorithm and show that under suitable conditions it can efficiently learn cer-
tain functions f : [b]n → {−1, 1}. As mentioned earlier, our aim is to attain
poly(log b) runtime dependence on b and consequently obtain efficient algorithms
as described in Section 2. This goal precludes using Jackson’s original Harmonic
Sieve variant for [b]n since the runtime of his weak learner depends polynomially
rather than polylogarithmically on b (see [13, Lemma 15]).

As we describe below, this poly(log b) runtime can be achieved by modifying
the Harmonic Sieve over [b]n to use a weak learner due to Akavia et al. [1]
which is more efficient than Jackson’s weak learner. We shall call the resulting
algorithm “The Generalized Harmonic Sieve” algorithm, or GHS for short.

Recall that in the Harmonic Sieve over the Boolean domain {−1, 1}n, the
weak hypotheses used are simply the Fourier basis elements over {−1, 1}n, which
correspond to the Boolean-valued parity functions. For [b]n, we will use the real
component of the complex-valued Fourier basis elements {χα, α ∈ [b]n} as our
weak hypotheses.

The following theorem of Akavia et al. [1, Theorem 5] plays a crucial role:

Theorem 5 (See [1]). There is a learning algorithm that, given membership
query access to f : [b]n → C, 0 < γ and 0 < δ < 1, outputs a list L of indices such
that with probability at least 1− δ, we have {α : |f̂(α)| > γ} ⊆ L and |f̂(β)| ≥ γ

2
for every β ∈ L. The running time of the algorithm is polynomial in n, log b,
‖f‖∞, γ−1, log(δ−1).

A weak learning algorithm can be obtained building on Theorem 5 (see [3] for
details; because of space limitations the proof is omitted here), which combined
with Theorem 4 gives rise to the following corollary:

Corollary 2 (The Generalized Harmonic Sieve). Let C be a concept class.
Suppose that for any concept f ∈ Cn,b and any distribution D over [b]n with
L∞(D) < poly(ε−1)/bn there exists a Fourier basis element χα such that

38 A. Atıcı and R.A. Servedio

|ED[fχα]| ≥ γ.

Then C can be learned in time poly(n, log b, ε−1, γ−1).

4 Learning Majority of Parity Using GHS

In this section we identify classes of functions which can be learned efficiently
using the GHS algorithm and prove Theorem 1.

To prove Theorem 1, we show that for any concept f ∈ C and under any
smooth distribution there must be some Fourier basis element which has non-
negligible correlation with f ; this is the essential step which lets us apply the
Generalized Harmonic Sieve. We prove this in Section 4.2. In Section 4.3 we give
an alternate argument which yields a Theorem 1 analogue but with a slightly
different bound on r, namely r = O(log(n log b)

log log b).

4.1 Setting the Stage

For ease of notation we will write abs(α) to denote min{α, b − α}. We will use
the following simple lemma (see [1] for proof) and corollary (see [3] for proof):

Lemma 3 (See [1]). For all 0 ≤ ≤ b, we have |
∑�−1

y=0 ω
αy
b | < b/abs(α).

Corollary 3. Let f : [b]→ {−1, 1} be a basic b-literal. Then if α = 0, |f̂(α)| < 1,
while if α �= 0, |f̂(α)| < 2

abs(α) .

The following easy lemma (see [3] for proof) is useful for relating the Fourier
transform of a b-literal to the corresponding basic b-literal:

Lemma 4. For f, g : [b] → C such that g(x) = f(xz) where gcd(z, b) = 1, we
have ĝ(α) = f̂(αz−1).

A natural way to approximate a b-literal is by truncating its Fourier representa-
tion. We make the following definition:

Definition 3. Let k be a positive integer. For f : [b]→ {−1, 1} a basic b-literal,
the k-restriction of f is f̃ : [b] → C, f̃(x) =

∑
abs(α)≤k f̂(α)χα(x). More gen-

erally, for f : [b] → {−1, 1} a b-literal (so f(x) = f ′(xz) where f ′ is a basic
b-literal) the k-restriction of f is f̃ : [b]→ C, f̃(x) =

∑
abs(αz−1)≤k f̂(α)χα(x) =∑

abs(β)≤k f̂
′(β)χβ(x).

4.2 Correlated Fourier Basis Elements for Functions in C

In this section we show that given any f ∈ C and any smooth distribution D,
some Fourier basis element must have high correlation with f . We begin by
bounding the error of the k-restriction of a basic b-literal (see [3] for proof):

Lemma 5. For f : [b]→ {−1, 1} a b-literal and f̃ the k-restriction of f , we have
E[|f − f̃ |2] = O(1/k).

Learning Unions of ω(1)-Dimensional Rectangles 39

Now suppose that f is an r-Parity of b-literals f1, . . . , fr. Since Parity corre-
sponds to multiplication over the domain {−1, 1}, this means that f =

∏r
i=1 fi.

It is natural to approximate f by the product of the k-restrictions
∏r

i=1 f̃i. The
following lemma bounds the error of this approximation:

Lemma 6. For i = 1, . . . , r, let fi : [b] → {−1, 1} be a b-literal and let f̃i be its
k-restriction. Then

E[|f1(x1)f2(x2) . . . fr(xr)− f̃1(x1)f̃2(x2) . . . f̃r(xr)|] < O(1) · (e
O(1)r√

k − 1).

Proof. First note that by the non-negativity of variance and Lemma 5, we have
that for each i = 1, . . . , r:

Exi [|fi(xi)− f̃i(xi)|] ≤
√

Exi [|fi(xi)− f̃i(xi)|2] = O(1/
√
k).

Therefore we also have for each i = 1, . . . , r:

Exi [|f̃i(xi)|] < Exi[|f̃i(xi)− fi(xi)|]︸ ︷︷ ︸
<O(1√

k
)

+Exi[|fi(xi)|]︸ ︷︷ ︸
=1

≤ 1 +
O(1)√

k
.

For any (x1, . . . , xr) we can bound the difference in the lemma as follows:

|f1(x1) . . . fr(xr) − f̃1(x1) . . . f̃r(xr)| ≤
|f1(x1) . . . fr(xr) − f1(x1) . . . fr−1(xr−1)f̃r(xr)| +

|f1(x1) . . . fr−1(xr−1)f̃r(xr) − f̃1(x1) . . . f̃r(xr)| ≤
|fr(xr) − f̃r(xr)| + |f̃r(xr)||f1(x1) . . . fr−1(xr−1) − f̃1(x1) . . . f̃r−1(xr−1)|

Therefore the expectation in question is at most:

E
xr

[|fr(xr) − f̃r(xr)|]︸ ︷︷ ︸
=O(1√

k
)

+ E
xr

[|f̃r(xr)|]︸ ︷︷ ︸
≤1+ O(1)√

k

·E(x1,...,xr−1)[|f1(x1) . . . fr−1(xr−1) − f̃1(x1) . . . f̃r−1(xr−1)|].

We can repeat this argument successively until the base case Ex1 [|f1(x1) −
f̃1(x1)|] ≤ O(1√

k
) is reached. Thus for some K = O(1), 1 < L = 1 + O(1)√

k
;

E[|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)|] ≤
K
∑r−1

i=0 Li

√
k

< O(1) · (e
O(1)r√

k − 1).��

Now we are ready for the main theorem asserting the existence (under suitable
conditions) of a highly correlated Fourier basis element. The basic approach of
the following proof is reminiscent of the main technical lemma from [14].

Theorem 6. Let τ be a parameter to be specified later and C be the concept
class consisting of s-Majority of r-Parity of b-literals where s = poly(τ)
and r = O(log(τ)

log log(τ)). Then for any f ∈ Cn,b and any distribution D over [b]n

with L∞(D) = poly(τ)/bn, there exists a Fourier basis element χα such that
|ED[fχα]| > Ω(1/poly(τ)).

40 A. Atıcı and R.A. Servedio

Proof. Assume f is a Majority of h1, . . . , hs each of which is a r-Parity of
b-literals. Then Lemma 2 implies that there exists hi such that |ED[fhi]| ≥ 1/s.
Let hi be Parity of the b-literals 1, . . . , r.

Since s and bn·L∞(D) are both at most poly(τ) and r = O(log(τ)
log log(τ)), Lemma 6

implies that there are absolute constants C1, C2 such that if we consider the k-
restrictions ̃1, . . . , ̃r of 1, . . . , r for k = C1·τC2 , we will have E[|hi−

∏r
j=1 ̃j |] ≤

1/(2sbnL∞(D)) where the expectation on the left hand side is with respect to the
uniform distribution on [b]n. This in turn implies that ED[|hi−

∏r
j=1 ̃j|] ≤ 1/2s.

Let us write h′ to denote
∏r

j=1 ̃j. We then have

|ED[fh′]| ≥ |ED[fhi]| − |ED[f(hi − h′)]| ≥ |ED[fhi]| −ED[|f(hi − h′)|]
= |ED[fhi]| −ED[|hi − h′|] ≥ 1/s− 1/2s = 1/2s.

Now observe that we additionally have

|ED[fh′]| = |ED[f
∑
α
ĥ′(α)χα]| = |

∑
α
ĥ′(α)ED[fχα]| ≤ L1(h′)max

α
|ED[fχα]|

Moreover, for each j = 1, . . . , r we have the following (where we write ′j to
denote the basic b-literal associated with the b-literal j):

L1(̃j) =
∑

abs(α)≤k

|̂′j(α)| =︸︷︷︸
by Corollary 3

1 +
k∑

α=1
O(1)/α = O(log k).

Therefore, for some absolute constant c > 0 we have L1(h′) ≤
∏r

j=1 L1(̃j) ≤
(c log k)r, where the first inequality holds since the L1 norm of a product is at
most the product of the L1 norms. Combining inequalities, we obtain our goal:

max
α
|ED[fχα]| ≥ 1/(2s(c log k)r) = Ω(1/poly(τ)). ��

Since we are interested in algorithms with runtime poly(n, log b, ε−1), setting
τ = nε−1 log b in Theorem 6 and combining its result with Corollary 2, gives rise
to Theorem 1.

4.3 The Second Approach

A different analysis, similar to that which Jackson uses in the proof of [13, Fact
14], gives us an alternate bound to Theorem 6 (see [3] for proof):

Lemma 7. Let C be the concept class consisting of s-Majority of r-Parity
of b-literals. Then for any f ∈ Cn,b and any distribution D over [b]n, there exists
a Fourier basis element χα such that |ED[fχα]| = Ω(1/s(log b)r).

Combining this result with that of Corollary 2 we obtain the following result:

Theorem 7. The concept class C consisting of s-Majority of r-Parity of
b-literals can be learned in time poly(s, n, (log b)r) using the GHS algorithm.

Learning Unions of ω(1)-Dimensional Rectangles 41

As an immediate corollary we obtain the following close analogue of Theorem 1:

Theorem 8. The concept class C consisting of s-Majority of r-Parity of b-
literals where s = poly(n log b), r = O(log(n log b)

log log b) is efficiently learnable using
the GHS algorithm.

5 Locating Sensitive Elements and Learning with GHS on
a Restricted Grid

In this section we consider an extension of the GHS algorithm which lets us
achieve slightly better bounds when we are dealing only with basic b-literals.
Following an idea from [4], the new algorithm works by identifying a subset of
“sensitive” elements from [b] for each of the n dimensions.

Definition 4 (See [4]). A value σ ∈ [b] is called i-sensitive with respect to
f : [b]n → {−1, 1} if there exist values c1, c2, . . . , ci−1, ci+1, . . . , cn ∈ [b] such that
f(c1, . . . , ci−1, σ − 1, ci+1, . . . , cn) �= f(c1, . . . , ci−1, σ, ci+1, . . . , cn). A value σ is
called sensitive with respect to f if σ is i-sensitive for some i. If there is no
i-sensitive value with respect to f , we say index i is trivial.

The main idea is to run GHS over a restricted subset of the original domain
[b]n, which is the grid formed by the sensitive values and a few more additional
values, and therefore lower the algorithm’s complexity.

Definition 5. A grid in [b]n is a set S = L1×L2×· · ·×Ln with 0 ∈ Li ⊆ [b] for
each i. We refer to the elements of S as corners. The region covered by a corner
(x1, . . . , xn) ∈ S is defined to be the set {(y1, . . . , yn) ∈ [b]n : ∀i, xi ≤ yi < �xi	}
where �xi	 denotes the smallest value in Li which is larger than xi (by convention
�xi	 := b if no such value exists). The area covered by the corner (x1, . . . , xn) ∈ S

is therefore defined to be
∏n

i=1(�xi	 − xi). A refinement of S is a grid in [b]n of
the form L′

1 × L′
2 × · · · × L′

n where each Li ⊆ L′
i.

The following lemma is proved in [3].

Lemma 8. Let S be a grid L1 × L2 × · · · × Ln in [b]n such that each |Li| ≤ .
Let IS denote the set of indices for which Li �= {0}. If |IS| ≤ κ, then S admits
a refinement S′ = L′

1 × L′
2 × · · · × L′

n such that

1. All of the sets L′
i which contain more than one element have the same number

of elements: Lmax, which is at most + Cκ, where C = b
κ� ·

1
b/4κ�� ≥ 4.

2. Given a list of the sets L1, . . . , Ln as input, a list of the sets L′
1, . . . , L

′
n can

be generated by an algorithm with a running time of O(nκ log b).
3. L′

i = {0} whenever Li = {0}.
4. Any ε fraction of the corners in S′ cover a combined area of at most 2εbn.

The following lemma is easy and useful; similar statements are given in [4]. Note
that the lemma critically relies on the b-literals being basic.

42 A. Atıcı and R.A. Servedio

Lemma 9. Let f : [b]n → {−1, 1} be expressed as an s-Majority of Parity
of basic b-literals. Then for each index 1 ≤ i ≤ n, there are at most 2s i-sensitive
values with respect to f .

Proof. A literal on variable xi induces two i-sensitive values. The lemma follows
directly from our assumption (see Section 2) that for each variable xi, each of
the s Parity gates has at most one incoming literal which depends on xi. ��

Algorithm 1. An improved algorithm for learning Majority of Parity of
basic b-literals.
1: L1 ← {0}, L2 ← {0}, . . . , Ln ← {0}.
2: loop
3: S ← L1 × L2 × · · · × Ln.
4: S′ ← the output of refinement algorithm with input S.
5: One can express S′ = L′

1 × L′
2 × · · · × L′

n. If Li �= {0} then L′
i =

{xi
0, x

i
1 . . . , xi

(Lmax−1)}. Let xi
0 < xi

1 < · · · < xi
t−1 and let τi : ZLmax → L′

i

be the translation function such that τi(j) = xi
j . If Li = L′

i = {0} then τi is the
function simply mapping 0 to 0.

6: Invoke GHS over f |S′ with accuracy ε/8. This is done by simulating
MEM(f |S′(x1, . . . , xn)) with MEM(f(τ1(x1), τ2(x2), . . . , τn(xn))). Let the output
of the algorithm be g.

7: Let h be a hypothesis function over [b]n such that h(x1, . . . , xn) =
g(τ−1

1 (�x1�), . . . , τ−1
n (�xn�)) (�xi� denotes largest value in L′

i less than or equal
to xi).

8: if h ε-approximates f then
9: Output h and terminate.

10: end if
11: Perform random membership queries until an element (x1, . . . , xn) ∈ [b]n is found

such that f(�x1�, . . . , �xn�) �= f(x1, . . . , xn).
12: Find an index 1 ≤ i ≤ n such that

f(�x1�, . . . , �xi−1�, xi, . . . , xn) �= f(�x1�, . . . , �xi−1�, �xi�, xi+1, . . . , xn).

This requires O(log n) membership queries using binary search.
13: Find a value σ such that �xi� + 1 ≤ σ ≤ xi and f(�x1�, . . . , �xi−1�, σ −

1, xi+1, . . . , xn) �= f(�x1�, . . . , �xi−1�, σ, xi+1, . . . , xn). This requires O(log b)
membership queries using binary search.

14: Li ← Li ∪ {σ}.
15: end loop

Algorithm 1 is our extension of the GHS algorithm. It essentially works by re-
peatedly running GHS on the target function f but restricted to a small (relative
to [b]n) grid. To upper bound the number of steps in each of these invocations
we will be referring to the result of Theorem 8. After each execution of GHS, the
hypothesis defined over the grid is extended to [b]n in a natural way and is tested
for ε-accuracy. If h is not ε-accurate, then a point where h is incorrect is used to
identify a new sensitive value and this value is used to refine the grid for the next
iteration. The bound on the number of sensitive values from Lemma 9 lets us

Learning Unions of ω(1)-Dimensional Rectangles 43

bound the number of iterations. Our theorem about Algorithm 1’s performance
is the following:

Theorem 9. Let concept class C consist of s-Majority of r-Parity of basic
b-literals such that s = poly(n log b) and each f ∈ Cn,b has at most κ(n, b) non-
trivial indices and at most (n, b) i-sensitive values for each i = 1, . . . , n. Then
C is efficiently learnable if r = O(log(n log b)

log log κ�).

Proof. We assume b = ω(κ) without loss of generality. Otherwise one immedi-
ately obtains the result with a direct application of GHS through Theorem 8.

We clearly have κ ≤ n and ≤ 2s. By Lemma 9 there are at most κ = O(ns)
sensitive values. We will show that the algorithm finds a new sensitive value at
each iteration and terminates before all sensitive values are found. Therefore the
number of iterations will be upper bounded by O(ns). We will also show that
each iteration runs in poly(n, log b, ε−1) steps. This will give the desired result.

Let us first establish that step 6 takes at most poly(n, log b, ε−1) steps. To
obtain this it is sufficient to combine the following facts:

– By Lemma 8, for every non-trivial index i of f , L′
i has fixed cardinality

= Lmax. Therefore GHS could be invoked over the restriction of f onto the
grid, f |S′ , without any trouble.

– If f is s-Majority of r-Parity of basic b-literals, then the function obtained
by restricting it onto the grid: f |S′ could be expressed as t-Majority of u-
Parity of basic L-literals where t ≤ s, u ≤ r and L ≤ O(κ) (due to the 1st

property of the refinement).
– Running GHS over a grid with alphabet size O(κ) in each non-trivial in-

dex takes poly(n, log b, ε−1) time if the dimension of the rectangles are r =
O(log(n log b)

log log κ�) due to Theorem 8. (The key idea here is that running GHS over
this κ-size alphabet lets us replace the “b” in Theorem 8 with “κ”.)

To check whether if h ε-approximates f at step 8, we may draw O(1/ε) ·
log(1/δ) uniform random examples and use the membership oracle to empirically
estimate h’s accuracy on these examples. Standard bounds on sampling show
that if the true error rate of h is less than (say) ε/2, then the empirical error
rate on such a sample will be less than ε with probability 1 − δ. Observe that
if all the sensitive values are recovered by the algorithm, h will ε-approximate
f with high probability. Indeed, since g (ε/8)-approximates f |S′ , Property 4 of
the refinement guarantees that misclassifying the function at ε/8 fraction of the
corners could at most incur an overall error of 2ε/8 = ε/4. This is because when
all the sensitive elements are recovered, for every corner in S′, h either agrees
with f or disagrees with f in the entire region covered by that corner. Thus h
will be an ε/4 approximator to f with high probability. This establishes that the
algorithm must terminate within O(ns) iterations of the outer loop.

Locating another sensitive value occurs at steps 11, 12 and 13. Note that h is
not an ε-approximator to f because the algorithm moved beyond step 8. Even
if we were to correct all the mistakes in g this would alter at most ε/8 fraction
of the corners in the grid S′ and therefore ε/4 fraction of the values in h – again
due to the 4th property of the refinement and the way h is generated. Therefore

44 A. Atıcı and R.A. Servedio

for at least 3ε/4 fraction of the domain we ought to have f(�x1�, . . . , �xn�) �=
f(x1, . . . , xn) where �xi� denotes largest value in L′

i less than or equal to xi.
Thus the algorithm requires at most O(1/ε) random queries to find such an
input in step 11.

We have seen that steps 6, 8, 11, 12, 13 take at most poly(n, log b, ε−1) time,
so each iteration of Algorithm 2 runs in poly(n, log b, ε−1) steps as claimed.

We note that we have been somewhat cavalier in our treatment of the failure
probabilities for various events (such as the possibility of getting an inaccurate
estimate of h’s error rate in step 9, or not finding a suitable element (x1, . . . , xn)
soon enough in step 11). A standard analysis shows that all these failure prob-
abilities can be made suitably small so that the overall failure probability is at
most δ within the claimed runtime. ��

6 Applications to Learning Unions of Rectangles

In this section we apply the results we have obtained in Sections 4 and 5 to
obtain results on learning unions of rectangles and related classes.

6.1 Learning Majorities of Many Low-Dimensional Rectangles

The following lemma will let us apply our algorithm for learning Majority of
Parity of b-literals to learn Majority of And of b-literals:

Lemma 10. Let f : {−1, 1}n → {−1, 1} be expressible as an s-Majority of
r-And of Boolean literals. Then f is also expressible as a O(ns2)-Majority of
r-Parity of Boolean literals.

We note that Krause and Pudlák gave a related but slightly weaker bound in
[17]; they used a probabilistic argument to show that any s-Majority of And
of Boolean literals can be expressed as an O(n2s4)-Majority of Parity. Our
boosting-based argument below closely follows that of [13, Corollary 13].

Proof of Lemma 10: Let f be the Majority of h1, . . . , hs where each hi is
an And gate of fan-in r. By Lemma 2, given any distribution D there is some
And function hj such that |ED[fhj]| ≥ 1/s. It is not hard to show that the
L1-norm of any And function is at most 4 (see, e.g., [18, Lemma 5.1] for a
somewhat more general result), so we have L1(hj) ≤ 4. Now the argument from
the proof of Lemma 7 shows that there must be some parity function χa such
that |ED[fχa]| ≥ 1/4s, where the variables in χa are a subset of the variables in
hj – and thus χa is a parity of at most r literals. Consequently, we can apply the
boosting algorithm of [8] stated in Theorem 4, choosing the weak hypothesis to
be a Parity with fan-in at most r at each stage of boosting, and be assured that
each weak hypothesis has advantage at least 1/4s at every stage of boosting. If
we boost to accuracy ε = 1

2n+1 , then the resulting final hypothesis will have zero
error with respect to f and will be a Majority of O(log(1/ε)/s2) = O(ns2)
many r-Parity functions. Note that while this argument does not lead to a

Learning Unions of ω(1)-Dimensional Rectangles 45

computationally efficient construction of the desired Majority of r-Parity, it
does establish its existence, which is all we need. ��
Note that clearly any union (Or) of s many r-rectangles can be expressed as an
O(s)-Majority of r-rectangles as well.

Theorem 1 and Lemma 10 together give us Theorem 2. (In fact, these re-
sults give us learnability of s-Majority of r-And of b-literals which need not
necessarily be basic.)

6.2 Learning Unions of Fewer Rectangles of Higher Dimension

We now show that the number of rectangles s and the dimension bound r of
each rectangle can be traded off against each other in Theorem 2 to a limited
extent. We state the results below for the case s = poly(log(n log b)), but one
could obtain analogous results for a range of different choices of s.

We require the following lemma:

Lemma 11. Any s-term r-DNF can be expressed as an rO(
√

r log s)-Majority
of O(

√
r log s)-Parity of Boolean literals.

Proof. [16, Corollary 13] states that any s-term r-DNF can be expressed as an
rO(

√
r log s)-Majority of O(

√
r log s)-Ands. By considering the Fourier represen-

tation of an And, it is clear that each t-And in the Majority can be replaced
by at most 2O(t) many t-Paritys, corresponding to the parities in the Fourier
representation of the And. This gives the lemma. ��

Now we can prove Theorem 3, which gives us roughly a quadratic improvement
in the dimension r of rectangles over Theorem 2 if s = poly(log(n log b)).

Proof of Theorem 3: First note that by Lemma 9, any function in Cn,b can
have at most κ = O(rs) = poly(log(n log b)) non-trivial indices, and at most
 = O(s) = poly(log(n log b)) many i-sensitive values for all i = 1, . . . , n. Now
use Lemma 11 to express any function in Cn,b as an s′-Majority of r′-Parity
of basic b-literals where s′ = rO(

√
r log s) = poly(n log b) and r′ = O(

√
r log s) =

O(log(n log b)
log log log(n log b)). Finally, apply Theorem 9 to obtain the desired result. ��

Note that it is possible to obtain a similar result for learning poly(log(n log b))
union of O(log2(n log b)

(log log(n log b))4)-And of b-literals if one were to invoke Theorem 1.

6.3 Learning Majorities of Unions of Disjoint Rectangles

A set {R1, . . . , Rs} of rectangles is said to be disjoint if every input x ∈ [b]n

satisfies at most one of the rectangles. Learning unions of disjoint rectangles over
[b]n was studied by [4], and is a natural analogue over [b]n of learning “disjoint
DNF” which has been well studied in the Boolean domain (see e.g. [15, 2]).

We observe that when disjoint rectangles are considered Theorem 2 extends
to the concept class of majority of unions of disjoint rectangles; enabling us to
improve the depth of our circuits by 1. This extension relies on the easily verified

46 A. Atıcı and R.A. Servedio

fact that if f1, . . . , ft are functions from [b]n to {−1, 1}n such that each x satisfies
at most one fi, then the function Or(f1, . . . , ft) satisfies L1(Or(f1, . . . , ft)) =
O(L1(f1)+· · ·+L1(f(t))). This fact lets us apply the argument behind Theorem 6
without modification, and we obtain Corollary 1. Note that only the rectangles
connected to the same Or gate must be disjoint in order to invoke Corollary 1.

7 Conclusions and Future Work

For future work, besides the obvious goals of strengthening our positive results,
we feel that it would be interesting to explore the limitations of current tech-
niques for learning unions of rectangles over [b]n. At this point we cannot rule
out the possibility that the Generalized Harmonic Sieve algorithm is in fact a
poly(n, s, log b)-time algorithm for learning unions of s arbitrary rectangles over
[b]n. Can evidence for or against this possibility be given? For example, can one
show that the representational power of the hypotheses which the Generalized
Harmonic Sieve algorithm produces (when run for poly(n, s, log b) many stages)
is – or is not – sufficient to express high-accuracy approximators to arbitrary
unions of s rectangles over [b]n?

References

[1] A. Akavia, S. Goldwasser, S. Safra, Proving Hard Core Predicates Using List
Decoding, Proc. 44th IEEE Found. Comp. Sci.: 146–156 (2003).

[2] H. Aizenstein, A. Blum, R. Khardon, E. Kushilevitz, L. Pitt, D. Roth, On Learning
Read-k Satisfy-j DNF, SIAM Journal on Computing, 27(6): 1515–1530 (1998).

[3] A. Atıcı and R. Servedio, Learning Unions of ω(1)-Dimensional Rectangles, avail-
able at http://arxiv.org/abs/cs.LG/0510038

[4] A. Beimel, E. Kushilevitz, Learning Boxes in High Dimension, Algorithmica,
22(1/2): 76–90 (1998).

[5] J. Bruck. Harmonic Analysis of Polynomial Threshold Functions, SIAM Journal
on Discrete Mathematics, 3(2): 168–177 (1990).

[6] Z. Chen and S. Homer, The Bounded Injury Priority Method and The Learnability
of Unions of Rectangles, Annals of Pure and Applied Logic, 77(2): 143–168 (1996).

[7] Z. Chen and W. Maass, On-line Learning of Rectangles and Unions of Rectangles,
Machine Learning, 17(2/3): 23–50 (1994).

[8] Y. Freund, Boosting a Weak Learning Algorithm by Majority, Information and
Computation, 121(2): 256–285 (1995).

[9] Y. Freund and R. Schapire. A Short Introduction to Boosting, Journal of the
Japanese Society for Artificial Intelligence, 14(5): 771-780 (1999).

[10] P. W. Goldberg, S. A. Goldman, H. D. Mathias, Learning Unions of Boxes with
Membership and Equivalence Queries, COLT ’94: Proc. of the 7th annual confer-
ence on computational learning theory: 198 – 207 (1994).

[11] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, G. Turan, Threshold Circuits of
Bounded Depth, J. Comp. & Syst. Sci. 46: 129–154 (1993).

[12] J. H̊astad, Computational Limitations for Small Depth Circuits, MIT Press, Cam-
bridge, MA (1986).

[13] J. C. Jackson, An Efficient Membership-Query Algorithm for Learning DNF with
Respect to the Uniform Distribution, J. Comp. & Syst. Sci. 55(3): 414–440 (1997).

Learning Unions of ω(1)-Dimensional Rectangles 47

[14] J. C. Jackson, A. R. Klivans, R. A. Servedio, Learnability Beyond AC0, Proc.
of the 34th annual ACM symposium on theory of computing (STOC): 776–784
(2002).

[15] R. Khardon. On Using the Fourier Transform to Learn Disjoint DNF, Information
Processing Letters,49(5): 219–222 (1994).

[16] A. R. Klivans, R. A. Servedio, Learning DNF in Time 2Õ(n1/3), J. Comp. & Syst.
Sci. 68(2): 303–318 (2004).

[17] M. Krause and P. Pudlák, Computing Boolean Functions by Polynomials and
Threshold Circuits, Computational Complexity 7(4): 346–370 (1998).

[18] E. Kushilevitz and Y. Mansour, Learning Decision Trees using the Fourier Spec-
trum, SIAM Journal on Computing 22(6): 1331-1348 (1993).

[19] W. Maass and M. K. Warmuth, Efficient Learning with Virtual Threshold Gates,
Information and Computation, 141(1): 66–83 (1998).

[20] R. E. Schapire, The Strength of Weak Learnability, Machine Learning 5: 197–227
(1990).

On Exact Learning Halfspaces with
Random Consistent Hypothesis Oracle

(Extended Abstract)

Nader H. Bshouty and Ehab Wattad

Department of Computer Science
Technion, Haifa, 32000, Israel.

{bshouty, wattad}@cs.technion.ac.il

Abstract. We study exact learning of halfspaces from equivalence
queries. The algorithm uses an oracle RCH that returns a random con-
sistent hypothesis to the counterexamples received from the equivalence
query oracle. We use the RCH oracle to give a new polynomial time
algorithm for exact learning halfspaces from majority of halfspaces and
show that its query complexity is less (by some constant factor) than the
best known algorithm that learns halfspaces from halfspaces.

1 Introduction

In this paper we consider learning strategies for exact learning halfspaces, HSd
n,

over the domain {0, 1, . . . , n− 1}d from equivalence queries and study the query
complexity and the time complexity of exact learning using those strategies. Our
strategies are based on two basic oracles. An RCHC-oracle that chooses a uniform
random consistent (to the counterexamples) halfspace from HSd

n and an RCH-
oracle that chooses a random consistent halfspace over �d (uniform random
halfspace from the dual space of all consistent halfspaces). The advantage of
the RCH-oracle over the RCHC-oracle is that it can be simulated in polynomial
time [L98].

We study exact learning halfspaces using both oracles. We first show that the
Halving algorithm can be performed using a number of calls to RCHC-oracle that
depends only on the dimension of the space d. We then give a new polynomial
time exact learning algorithm that uses the RCH-oracle for learning halfspaces
from majority of halfspaces. We show that the latter algorithm runs in polyno-
mial time with query complexity that is less (by some constant factor) than the
best known algorithm that learns halfspaces from halfspaces.

2 Preliminaries

In this section we give some preliminaries and introduce some terms and concepts
that will be used throughout the paper.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 48–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 49

2.1 Probability

Let F be a Boolean functions F : X → {0, 1} and D a distribution on X . Let
U be the uniform distribution over X . For S ⊆ X , we will write x ∈D S when
we want to indicate that x is chosen from S according to the distribution D.
Suppose we randomly and independently choose S = {x(1), . . . , x(m)} from X ,
each x(i) according to the distribution D. We will write EX for Ex∈DX and ES

for Ex∈US . We say that S = (X,C) is a range space if C is a set of Boolean
functions f : X → {0, 1}. Each function in C can be also regarded as a subset
of X . We will also call C a concept class. For a Boolean function F ∈ C and a
subset A ⊆ X the projection of F on A is the Boolean function F|A : A→ {0, 1},
such that, for every x ∈ A we have F|A(x) = F (x). For a subset A ⊆ X we define
the projection of C on A to be the set PC(A) = {F|A | F ∈ C}. If PC(A) contains
all the functions, 2A, then we say that A is shattered. The Vapnik-Chervonenkis
dimension (or VC-dimension) of S, denoted by VCdim(S), is the maximum
cardinality of a subset S of X that is shattered.

Let (X,C) be a range space and D be a distribution on X . We say that a
set of points S ⊆ X is an ε-net if for any F ∈ C that satisfies EX [F (x)] > ε, S
contains at least one positive point for F , i.e., a point y in S such that F (y) = 1.
Notice that ES [F (x)] = 0 if and only if S contains no positive point for F .
Therefore, S is not an ε-net if and only if

(∃F ∈ C) EX [F (x)] > ε and ES [F (x)] = 0.

We say that S is ε-sample if

(∀F ∈ C) |EX [F (x)]− ES [F (x)]| ≤ ε.

Notice that an ε-sample is an ε-net. We now list few results from the literature

Lemma 1. Let F : X → {0, 1} be a Boolean function. Suppose we randomly
and independently choose S = {x(1), . . . , x(m)} from X according to the distri-
bution D.
Bernoulli For m = 1

ε ln 1
δ we have

Pr [EX [F (x)] > ε and ES [F (x)] = 0] ≤ δ.

Chernoff (Additive form) For m = 1
2ε2 ln 2

δ we have

Pr [|EX [F (x)]− ES [F (x)]| > ε] ≤ 2e−2ε2m = δ.

It follows from Lemma 1

Lemma 2. Let C be a concept class of Boolean functions F : X → {0, 1}.
Suppose we randomly and independently choose S = {x(1), . . . , x(m)} from X
according to the distribution D.
Bernoulli For any finite concept class C and

m =
1
ε

(
ln |C|+ ln

1
δ

)

50 N.H. Bshouty and E. Wattad

we have Pr [(∃F ∈ C) EX [F (x)] > ε and ES [F (x)] = 0] ≤ δ.
That is, with probability at least 1− δ, the set S is ε-net.

Chernoff (Additive form) For any finite concept class C and

m =
1

2ε2

(
ln |C|+ ln

2
δ

)
we have Pr [(∃F ∈ C) |EX [F (x)] − ES [F (x)]| > ε] ≤ δ.

That is, with probability at least 1− δ, the set S is ε-sample.

The following uses the VCdim and for many concept classes C gives a better
bound

Lemma 3. Let C be a concept class of Boolean functions F : X → {0, 1}.
Suppose we randomly and independently choose S = {x(1), . . . , x(m)} from X
according to the distribution D.
ε-Net ([HW87], [BEHW89]) There is a constant cNet such that for any concept
class C and

m =
cNet

ε

(
VCdim(C) log

1
ε

+ log
1
δ

)
we have Pr [(∃F ∈ C) EX [F (x)] > ε and ES [F (x)] = 0] ≤ δ.

That is, with probability at least 1− δ, the set S is ε-net.
ε-Sample ([VC71]) There is a constant cV C such that for any concept class C
and

m =
cV C

ε2

(
VCdim(C) log

VCdim(C)
ε

+ log
1
δ

)
we have Pr [(∃F ∈ C) |EX [F (x)] − ES [F (x)]| > ε] ≤ δ.

That is, with probability at least 1− δ, the set S is ε-sample.

2.2 Halfspace

A halfspace is a simple model of neuron activity. A simplified account of how
neuron works can be found in [P94] Chapter 3.

Let w = (w1, . . . , wd) ∈ �d and t ∈ �. We define the halfspace fw,t over
X ⊆ �d (also called linear threshold function [P94] and Perceptron [MP43]) as
follows:

fw,t(x) =
{

1 if wTx ≥ t
0 otherwise

for every x ∈ X . We will also use the notation fw,t = [wTx ≥ t]. The constants
w = (w1, . . . , wd) are called the weights and t is called the threshold value. The
class HSd

X is the class of all halfspace functions over X . For the sake of notational
convenience when X = [n]d = {0, 1, . . . , n−1}d we denote HSd

X by HSd
n and when

X = � we denote it by HSd. When n = 2 we call fw,t ∈HSd
2 a threshold Boolean

function. When the threshold value t = 0 we write fw for fw,t and call it zero
halfspace (also called zero threshold [P94]).

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 51

It is known that the VC-dimension of HSd
X is at most d + 1 and of HSd

2 is
exactly d + 1, [WD81].

We will now give some results for halfspaces that will be used in the sequel.
We start with the following

Lemma 4. ([P94]) We have nd2+d > |HSd
n| > nd(d−1)/2.

The proof in ([P94]) is for HSd
2. The same proof is also true for HSd

n. Notice also
that the upper bound follows immediately from Sauer’s Lemma

Lemma 5. ([P94]) For every f ∈ HSd
2 there is w ∈ Zd and t ∈ Z such that

fw,t ≡ f and for all 1 ≤ i ≤ n,

|wi| ≤
(d + 1)(d+1)/2

2d
= d

d
2−

d
log d +o(1).

Hastad [H94] showed that this bound is tight for d that is power of 2. That is,
for any integer k and for d = 2k there is a halfspace f such that for any fw,t ≡ f

there is 1 ≤ i ≤ n with |wi| ≥ d
d
2−

d
log d . For HSd

n and d that is power of 2, Hastad
achieves the bound

|wi| ≥ (n− 1)dd
d
2−

d
log d .

On the other hand, we have

Lemma 6. ([MT94]) For every f ∈ HSd
n there is w ∈ Zd and t ∈ Z such that

f ≡ fw,t and for every 1 ≤ i ≤ n, |wi| ≤ 3n2(d+1)(2d + 2)d+2.

Using a similar technique as in [P94] we prove in the full paper the following

Lemma 7. For every f ∈ HSd
n there is w ∈ Zd and t ∈ Z such that f ≡ fw,t

and for every 1 ≤ i ≤ n,

|wi| ≤
(n− 1)d−1(d + 1)(d+1)/2

2d
,

|t| < (n− 1)
∑

i

|wi| =
(n− 1)dd(d + 1)(d+1)/2

2d
.

2.3 Dual Domain

Define a map φ : �d+1 → HSd
X where φ(w, t) = fw,t. Notice that two different

points (w1, t1) and (w2, t2) may map into the same halfspace, i.e., φ(w1, t1) ≡
φ(w2, t2). We call the domain �d+1 in φ the coefficients domain or the dual
domain. For f ∈ HSd

X , we call φ−1(f) ∈ �d+1 the polytope that corresponds to
f in the dual space. For a d-hypercube UR = [−R,R]d+1 we say that UR covers
HSd

X if for every fw,t ∈ HSd
X there is (u, t′) ∈ UR such that φ(u, t′) = fu,t′ ≡ fw,t.

For a hypercube UR that covers HSd
X we define

Vmin(R) = min
f∈HSd

X

Vol(UR ∩ φ−1(f)),

52 N.H. Bshouty and E. Wattad

where Vol() is the volume in the (d+ 1)-dimensional space. This is the minimal
volume of polytope in UR that corresponds to f ∈ HSd

X .
By Lemma 7 we can choose for HSd

n,

R =
(n− 1)dd(d + 1)(d+1)/2

2d
. (1)

Lemma 8. For R in (1) we have

Vmin(R) ≥ 1
2d+1(d(n− 1))d

.

The proof is in the full paper.

2.4 Convex Set

A subset K ⊂ �d is called convex set if for every x, y ∈ K and every 0 ≤ λ ≤ 1
we have λx + (1 − λ)y ∈ K, i.e., the line connecting the two points x and y is
in K.

An affine transformation is φA,B : x �→ Ax + B where A and B are d × d
matrices and A is nonsingular (det(A) �= 0). The affine transformation changes
the volume of any subset by the same factor α = |det(A)|. In particular,

Vol(φA,B(K)) = |det(A)|Vol(K).

For a uniform random point x in K the centroid (center of gravity) is EK [x]
and the covariant matrix is EK [xxT] . A convex set K in �d is said to be in
isotropic position if:

1. The centroid of K is the origin, i.e., EK [x] = 0
2. The covariant matrix of K is the identity, i.e., EK [xxT] = I.

For any full-dimensional (Vol(K) �= 0 in �d) convex set, there exists an affine
transformation that puts the set in isotropic position.

It is known from [G60]

Lemma 9. For a convex set K, any cut through its centroid by a halfspace has
at least 1/e of the volume on each side.

In [BV02], Bertsimas and Vempala show

Lemma 10. Let K be a convex set in isotropic position and z be a point at
distance t from its centroid. Then any halfspace containing z also contains at
least 1

e − t of the volume of K.

In the full paper we use the above with Lemma 10 to prove the following

Lemma 11. Let K be a convex set in �d. Let z be the average of kd random
uniform points in K. Then with probability at least 1−δ any halfspace containing
z also contains at least 1

e −
1√
kδ

of the volume of K.

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 53

3 Learning Models

In the online learning model [L88] the learning task is to identify an unknown
target halfspace f that is chosen by a teacher from HSd

X . At each trial, the
teacher sends a point x ∈ X to the learner and the learner has to predict f(x).
The learner returns to the teacher a prediction y. If f(x) �= y then the teacher
returns “mistake” to the learner. The goal of the learner is to minimize the
number of prediction mistakes.

In the online learning model we say that algorithm A of the learner online
learns the class HSd

X if for any f ∈ HSd
X and for any δ, algorithm A(δ) with

probability at least 1 − δ makes a bounded number of mistakes. We say that
HSd

X is online learnable with t mistakes if the number of mistakes is bounded
by t. We say that HSd

X is efficiently online learnable with t mistakes if the
number of mistakes is bounded by t and the running time of the learner for each
prediction is poly(1/δ, d, log |X |). The bound of the number of mistakes t of an
online learning algorithm is also called the mistake bound of the algorithm.

In the exact learning model [A88] the learning task is to identify an unknown
target halfspace f , that is chosen by a teacher from HSd

X , from queries. The
learner at each trial sends the teacher a hypothesis h from some class of hypoth-
esis H and asks the teacher whether this hypothesis is equivalent to the target
function (this is called the equivalence query). The teacher either sends back a
“YES” indicating that h is equivalent to the target function f or, otherwise, it
sends a counterexample a. That is, an instance a ∈ X such that h(a) �= f(a).

In the exact learning model we say that algorithm A of the learner exactly
learns the class HSd

X from H if for any f ∈ HSd
X and for any δ, algorithm A(δ)

with probability at least 1− δ makes a bounded number of equivalence queries
and finds a hypothesis in H that is equivalent to the target function f . We say
that HSd

X is exactly learnable from H with t equivalence queries if the number
of equivalence queries is bounded by t. We say that HSd

X is efficiently exactly
learnable from H with t equivalence queries if the number of equivalence queries
is bounded by t and the running time of the learner is poly(1/δ, d, log |X |).

It is known [A88] that if HSd
X is exactly learnable from H with t equivalence

queries then HSd
X is online learnable with t − 1 mistakes. If HSd

X is efficiently
exactly learnable from H with t equivalence queries and elements of H are
efficiently computable (for each h ∈ H and x ∈ X we can compute h(x) in
polynomial time) then HSd

X is efficiently online learnable with t− 1 mistakes.

4 Old and New Results

In this paper we consider different learning strategies for exact learning half-
spaces and study the query complexity and time complexity of learning with
those strategies. Our strategies are based on two basic oracles:

1. An RCH-oracle that chooses a uniform random halfspace in the dual domain
that is consistent to the counterexamples seen so far.

54 N.H. Bshouty and E. Wattad

2. An RCHC -oracle that chooses a uniform random hypothesis from the class
being learned C that is consistent to the counterexamples seen so far.

We will study the query complexity as well as the number of calls to the RCH-
oracles and RCHC -oracle.

The RCH-oracle can be simulated in polynomial time, [L98], and therefore all
the algorithms in this paper that uses this oracle runs in polynomial time. On the
other hand, it is not known how to simulate the RCHC -oracle in polynomial time.

The first algorithm considered in this paper in the Halving algorithm [A88,
L88]. In the Halving algorithm the learner chooses at each trial the majority of
all the halfspaces in C that are consistent with the examples seen so far. Then
it asks equivalence query with this hypothesis. Each counterexample for this hy-
pothesis eliminates at least half of the consistent halfspaces. Therefore, by Lemma
4 the query complexity of the Halving algorithm is at most

log |HSd
n| ≤ d2 logn + d logn.

The randomized Halving algorithm [BC+96] uses the RCHC -oracle and asks on
average (1+c)d2 logn equivalence queries1 for any constant c > 0. For each query
it takes the majority of t = O(d log n) uniform random halfspaces from C that
are consistent to the counterexamples seen so far. This requires t = O(d log n)
calls to the RCHC -oracle. In the next section we will show that

t = O(dmin(log d, logn))

calls to the RCHC -oracle suffices. Notice that, for large n the number of calls
O(d log d) is independent of n. This significantly improves the number of calls
to the RCHC -oracle. In particular, for constant dimensional space, the number
of calls to the oracle is O(1). Unfortunately, we do not know if the RCHC -oracle
can be simulated in polynomial time and therefore this algorithm will not give
a polynomial time learning algorithm for halfspaces.

The first (exponential time) learning algorithm for halfspaces was the Percep-
tron learning algorithm PLA [R62]. The algorithm asks equivalence query with
(initially any) hypothesis hu(x) = [uTx ≥ 0]. For a positive counterexample
(a, 1) it updates the hypothesis to hu+a and for a negative counterexample it
updates the hypothesis to hu−a.

The equivalence query complexity of this algorithm is known to be ‖w‖2δmax/
δ2
min where δmin = minx∈X |wTx| and δmax = maxx∈X ‖x‖2 where fw is the

target function. For HSd
2 the above query complexity is less than (see [M94])

d2+d/2.

Therefore the running time of PLA is exponential.
Littlestone [L88] gave another algorithm (Winnow 2) for learning halfspaces. It

is known from [S02] that Winnow 2 learning algorithm runs in exponential time.

1 The complexity is d2 log n + o(d2 log n) if we take t = ω(d log n).

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 55

The first polynomial time learning algorithm was given by Maass and Tu-
ran [MT94]. They show that there is an Exact learning algorithm for HSd

n that
runs in polynomial time and asks

O(d2(log n + log d))

equivalence queries with hypotheses that are halfspaces. Using recent results in
linear programming we show that this algorithm uses

1.512 · d2
(

logn +
log d

2

)
equivalence queries and O(d) calls to the RCH-oracle in each trial.

In this paper we use a different approach and achieve a learning algorithm
that uses

d2
(

logn +
log d

2

)
(2)

equivalence queries with hypotheses that are majority of halfspaces. Our algo-
rithm uses O(d log d) calls to the RCH-oracle in each trial. Since the RCH-oracle
can be simulated in polynomial time, our algorithm runs in polynomial time.

In [MT94] Maass and Turan also gave a lower bound of(
d

2

)
logn ≤ 1

2
d2 logn. (3)

on the number of equivalence queries needed to learn HSd
n with any learning

algorithm that has unlimited computational power and that can ask equivalence
query with any hypothesis.

5 Learning with Halving Algorithm

In this section we study the query complexity and the hypothesis size of the
standard randomized Halving algorithm [BC+96]. We show

Theorem 1. The randomized halving algorithm uses on average (1 + c)d2 logn
equivalence queries for any constant c > 0 where each hypothesis to the equiva-
lence query is the majority of t = O(dmin(log d, logn)) uniform random consis-
tent halfspaces. That is, with t calls to the RCHC-oracle in each trial.

In the next subsection we give a general framework that proves a more general
Theorem.

5.1 The Dual Concept Class

Let C be a concept class of functions f : X → {0, 1}. We define the dual
class C⊥ of C, the set of all Boolean functions Fx : C → {0, 1} where, for

56 N.H. Bshouty and E. Wattad

x ∈ X , we have Fx(f) = f(x) for every f ∈ C. The dual VC-dimension of
C, VCdim⊥(C) is defined to be the VC-dimension of the dual class of C, i.e.,
VCdim⊥(C) = VCdim(C⊥).

The connection between the VC-dimension of C and its dual is given in the
following

Lemma 12. [BBK97] We have

�log VCdim(C)� ≤ VCdim⊥(C) ≤ 2VCdim(C)+1.

Since the dual of HSd
n is subset of HSd+1, we have VCdim⊥(HSd

n) ≤ d + 2.
For a concept class C of Boolean functions f : X → {0, 1} we define the

function

Maj(C)(x) =
{

1 Prf∈U C [f(x) = 1] ≥ 1
2

0 otherwise
where the probability is over the uniform distribution over C. We write g =η

Maj(C) if g(x) = Maj(C)(x) for all points x that satisfies

Δ(x)
def
= |Pr

f
[f(x) = 1]− Pr

f
[f(x) = 0]| ≥ η.

We now show

Lemma 13. Let f1, . . . , fm be m independently uniform random functions from
C where

m =
2
η2

(
ln |X |+ ln

2
δ

)
.

Then with probability at least 1− δ we have Maj(f1, . . . , fm) =η Maj(C).

Proof. We use Lemma 2. Consider the set W = {x |Δ(x) ≥ η}. Let the domain
be X = C, the concept class be C = {Fx|x ∈W}.

Consider the sample S = {f1, . . . , fm}. Then by Lemma 2

Pr[Maj(S) �=η Maj(C)] = Pr[(∃x ∈ W) Maj(f1(x), . . . , fm(x)) �= Maj(C)(x)]
≤ Pr[(∃x ∈ W) |Ef∈X [f(x)]− Ef∈S [f(x)]| ≥ η/2]
≤ Pr[(∃Fx ∈ C) |Ef∈X [Fx(f)]− Ef∈S [Fx(f)]| ≥ η/2]
≤ δ.

Notice that in Lemma 13 when X is infinite then m is infinite. In the next lemma
we show that the sample is finite when the dual VC-dimension is finite.

Lemma 14. Let f1, . . . , fm be m independently uniform random functions from
C where

m =
cV C

η2

(
VCdim⊥(C) log

VCdim⊥(C)
η

+ ln
1
δ

)
.

Then with probability at least 1− δ we have Maj(f1, . . . , fm) =η Maj(C).

Proof. We use Lemma 3 and the same proof as in Lemma 13.

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 57

5.2 The Randomized Halving Algorithm

In this subsection we prove the following result

Theorem 2. Let C be a concept class. The randomized Halving algorithm for
C asks on average

(1 + c) log |C|

equivalence queries for any constant c, where for each query it takes the majority
of

m = O(min(log |X |,VCdim⊥(C) log VCdim⊥(C))) (4)

uniform random consistent functions from C.

We note here that the constant of m in the order of equation (4) depends on c.
Since VCdim⊥(HSd

n) ≤ d + 2, Theorem 1 follows.
Proof of Theorem 2. We will show that if we choose

m = min

(
2
η2

(
ln |X |+ ln

2
δ

)
,
cV C

η2

(
VCdim⊥(C) log

VCdim⊥(C)
η

+ ln
1
δ

))

uniform random functions f1, . . . , fm from C then with probability at least 1−
δ the equivalence query with Maj(f1, . . . , fm) returns a counterexample that
eliminates at least 1/2− η/2 of the elements of C. This implies that on average
the number of equivalence queries is

log |C|
(1 − δ)(1− log(1 + η))

≤ (1 + c) log |C|

for some constants η and δ. Then for constant η and δ we have

m = O(min(log |X |,VCdim⊥(C) log VCdim⊥(C)).

To prove the above, let (x0, y0) be a counterexample received by the equiv-
alence query oracle. We have two cases: If Δ(x0) > η then with probability at
least 1− δ, Maj(f1(x0), . . . , fm(x0)) = Maj(C)(x0) and then (as in the Halving
algorithm) this counterexample eliminates at least half of the functions in C. If
Δ(x0) < η then by the definition of Δ at least 1/2− η/2 of the functions in C
are not equal to y0 on x0 and therefore this counterexample eliminates at least
1/2− η/2 of the elements of C.

6 Polynomial Time Learning Halfspaces

In this section we describe Maass and Turan algorithm using the new linear
programming results from the literature. We give the analysis of the complexity
of the algorithm and then give our new algorithm and analyse its complexity.

58 N.H. Bshouty and E. Wattad

6.1 Maass-Turan Algorithm

Following Maass and Turan techniques [MT94]: By Lemma 7 we may assume
that the target function fw,t satisfies: w ∈ Zd and t ∈ Z,

|wi| ≤
(n− 1)d−1(d + 1)(d+1)/2

2d
,

for every 1 ≤ i ≤ n and

|t| < (n− 1)
∑

i

|wi| =
(n− 1)dd(d + 1)(d+1)/2

2d
.

Those inequalities define a domain for (w, t) in the dual domain �d+1. Denote
this domain by W0. Also, each counterexample (x(i), f(x(i))), i = 1, . . . , t re-
ceived by an equivalence query defines a halfspace in the dual domain �d+1,{

wTx(i) ≥ 0 for f(x(i)) = 1
wTx(i) < 0 for f(x(i)) = 0

Let S be the set of counterexamples received from the first equivalence queries.
Suppose W� is the domain in the dual domain defined by S = {(x(i), f(x(i))) | i =
1, . . . , } and W0. Any hypothesis fw′,t′ that is chosen for the + 1 equiva-
lence query is a point (w′, t′) in the dual domain. Any counterexample p =
(x(�+1), f(x(�+1))) for fw′,t′ defines a new halfspace in the dual domain that
does not contain the point (w′, t′). If the volume of any cut through the point
(w′, t′) has at least 1 − α of the volume of W� then any counterexample will
define a new domain W�+1 such that Vol(W�+1) ≤ αVol(W�). By Lemma 8 if
the volume Vol(W�) is less than

Vmin
Δ=

1
2d+1(d(n− 1))d

,

then any point (w′, t′) in the domain gives a unique halfspace. Since

V ol(W0) =
(n− 1)d2

d(d + 1)
(d+1)2

2

2(d−1)(d+1)

and
V ol(W�+1) ≤ αV ol(W�),

the number of equivalence queries in this algorithm is

log V ol(W0)
Vmin

log 1
α

= cαd
2
(

logn +
log d

2

)
+ O(d(log n + log d)) (5)

where
cα =

1
log 1

α

.

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 59

This algorithm is equivalent to the algorithms that finds a point in a convex
set using a separation oracle. Today there are many methods for solving this
problem [V96, BV02, DV04].

If we choose (w′, t′) to be the centroid of W� then by Lemma 9 we have
α = 1 − e−1 and cα = 1.512. Since there is no polynomial time algorithm that
find the centroid we use Lemma 11. We use the RCH-oracle to choose kd = O(d)
random uniform points in W� and take the average point z = (w′′, t′′). Then
by Lemma 11 with probability at least 1 − δ any halfspace (counterexample)
containing z also contains at least 1/e− 1/

√
kδ of the volume of W�. Therefore

in each trial we have with probability at least 1− δ, α = 1− e−1 + 1/
√
kδ. Now

for appropriate constants k and δ the query complexity is on average

(1.512 + c) · d2
(

logn +
log d

2

)
for any constant c > 0.

In this paper we use a different approach and achieve a learning algorithm
that uses on average

(1 + c) · d2
(

logn +
log d

2

)
equivalence queries for any constant c > 0 using O(d log d) calls to the RCH-
oracle. Since RCH can be simulated in polynomial time, our algorithm runs in
polynomial time.

6.2 Our Algorithm

Our algorithm simply uses the Randomized Halving algorithm but with the
RCH-oracle instead of the RCHC -oracle. Since the RCH-oracle can be simulated
in polynomial time, the algorithm runs in polynomial time.

We first show the following

Lemma 15. Let W ⊆ �d+1 be any domain of volume V and consider all the
halfspaces over W , HSd+1

W . Let S be a set of m uniform random points in W
where

m =
cV C

ε2

(
(d + 2) log

d + 2
ε

+ log
1
δ

)
.

Then with probability at least 1− δ any cut (by a halfspace) in W that contains
at most m/2 points is of volume at most (1/2 + ε)V .

Proof. This Lemma follows from the ε-Sample in Lemma 3. Consider X = W
and C = HSd+1

W . Then for a halfspace F , EX [F (x)] is equal to the volume Vcut

of the cut (of this halfspace) over the volume of W and for the desired cut
ES [F (x)] < 1/2. Now since VC-dimension of HSd+1

W is at most d + 2 we have
with probability at least 1− δ,

|Vcut/V − 1/2| < ε.

This follows the result.

60 N.H. Bshouty and E. Wattad

We now give the algorithm:

Algorithm RanHalv
1. S ← Ø.
2. W (S) = W0∩ The halfspaces defined by S.
3. Choose m = cV C

ε2

(
(d + 2) log d+2

ε
+ log 1

δ

)
uniform random functions F =

{fw1 ,t1 , . . . , fwm,tm} using the RCH-oracle on the domain W (S).
4. Ask EQ(Maj(F)) → b.
5. If b=“Yes”
6. then output(Maj(F))
7. else S ← S ∪ {(b, Maj(F)(b))}
8. Goto 2

Fig. 1. Randomized Halving using the RCH-oracle

The algorithm RanHalv in Figure 1 is the randomized halving algorithm but
instead of using the RCHC-oracle it uses the RCH-oracle. We prove the following

Theorem 3. Algorithm RanHalv learns the class HSd
n with, on average,

(1 + c) · d2
(

logn +
log d

2

)
equivalence queries for any constant c > 0 using m = O(d log d) calls to the
RCH-oracle in each trial.

Proof. Let fw1,t1 , . . . , fwm,tm be

m =
cV C

ε2

(
(d + 2) log

d + 2
ε

+ log
1
δ

)
uniform random consistent functions in HSd

n. Let W� ⊂ �d+1 be as defined
in subsection 6.1. Then the points L = {(w1, t1), . . . , (wm, tm)} are random
points in W�. The counterexample (b, y) for Maj(fw1,t1 , . . . , fwm,tm) must be
a counterexample for at least m/2 function in F = {fw1,t1 , . . . , fwm,tm}. This
means that the cut W�+1 in W� caused by this counterexample contains at most
m/2 points from L. By Lemma 15 with probability at least 1−δ this cut satisfies

Vol(W�+1) ≤
(

1
2

+ ε

)
Vol(W�).

Therefore, the number of equivalence queries is, on average,

1
1− δ

log V ol(W0)
V ol(Vmin)

log 2
1+2ε

≤ (1 + c) · d2
(

logn +
log d

2

)
and m = O(d log d) for sufficient small constants ε and δ.

Note that c = O(ε + δ) and can be made o(1) with respect to d and n for any
1/ε, 1/δ = ω(1).

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle 61

7 Open Problems

In this paper we use a new technique and achieve a learning algorithm for half-
spaces that uses on average

(1 + c) · d2
(

logn +
log d

2

)
equivalence queries for any constant c > 0 using O(d log d) calls to the RCH-
oracle.

In [MT94] Maass and Turan show a lower bound of(
d

2

)
logn ≤ 1

2
d2 logn.

on the number of equivalence queries needed to learn HSd
n with any learning

algorithm that has unlimited computational power that can ask equivalence
query with any hypothesis. It is an open problem to

1. Close the gap between this lower bound and the new upper bound.
2. Get rid of the term (d2 log d)/2 in the upper bound.
3. Show that RCHC can be simulated in polynomial time. This will give a

polynomial time learning algorithm for HSd
n with d2 logn equivalence queries.

Another interesting question is whether parallel algorithms can speed up
learning Halfspaces. From [B97], if there is a parallel algorithm with e pro-
cessors that asks t parallel equivalence queries then there is a sequential algo-
rithm that asks t log e equivalence queries. Now since t log e > (1/2)d2 logn and
e = poly(d, logn), any efficient parallel algorithm for learning halfspaces will ask
at least

Ω

(
d2 logn

log d + log logn

)
parallel equivalence queries. Is there such algorithm?

It is also interesting to study learning Halfspaces in other models. See for
example [BJT02, BG02].

References

[A88] D. Angluin. Queries and concept learning. Machine Learning, 2, pp. 319-
342, 1987.

[B97] N. H. Bshouty. Exact learning of formulas in parallel. Machine Learning,
26, pp. 25-41, 1997.

[BBK97] S. Ben-David, N. H. Bshouty, E. Kushilevitz. A Composition Theorem
for Learning Algorithms with Applications to Geometric Concept Classes.
STOC 97, pp. 324-333, 1997.

[BC+96] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, C. Tamon. Oracles and
Queries That Are Sufficient for Exact Learning. Journal of Computer and
System Sciences, 52(3): pp. 421-433, 1996.

62 N.H. Bshouty and E. Wattad

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. J. ACM 36(4): 929-965 (1989)

[BG02] N. H. Bshouty and D. Gavinsky. PAC=PAExact and other equivalent
models. FOCS 02. pp. 167-176, 2002.

[BJT02] N. H. Bshouty, J. Jackson and C. Tamon, Exploring learnability between
exact and PAC. COLT 02, pp. 244-254, 2002.

[BV02] D. Bertsimas, S. Vempala. Solving convex programs by random walks.
STOC 02: pp. 109-115, 2002.

[DV04] J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm
for solving linear programs. STOC 04, pp. 315-320, 2004.

[G60] B. Grunbaum. Partitions of mass-distributions and convex bodies by hy-
perplanes. Pacific J. Math, 10, pp. 1257-1261, 1960.

[H94] J. Hastad. On the Size of Weights for Threshold Gates. SIAM Journal on
Discrete Mathematics, (7) 3, pp. 484-492, 1994.

[HW87] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete
Comput. Geom., 2: pp. 127-151, 1987.

[L88] N. Littlestone. Learning when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2, pp. 285-318, 1988.

[L98] L. Lovász. Hit-and-run mixes fast. Mathematical Programming, 86, pp.
443-461, 1998.

[M94] W. Maass. Perspectives of current research about the complexity of learn-
ing on neural nets. In V. P. Roychowdhury, K. Y. Siu, and A. Orlitsky,
editors, Theoretical Advances in Neural Computation and Learning, pp.
295-336. Kluwer Academic Publishers (Boston), 1994.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in
nervous activity. Bulletin of mathematical biophysics, 5:115-133, 1943.

[MT94] W. Maass and G. Turan. How fast can a threshold gate learn. In S. J.
Hanson, G. A. Drastal, and R. L. Rivest, editors, Computational Learning
Theory and Natural Learning System: Constraints and Prospects, MIT
Press (Cambridge), pp. 381-414, 1994.

[P94] I. Parberry. Circuit complexity and neural networks. The MIT press
(1994).

[R62] F. Rosenblatt, Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms, Spartan Books, New York, 1962.

[S02] R. Servedio. Perceptron, Winnow, and PAC Learning. SIAM Journal on
Computing, 31(5), pp. 1358-1369, 2002.

[V96] P. M. Vaidya. new algorithm for minimizing convex functions over convex
sets. Mathematical Programming, pp. 291-341, 1996.

[V84] L. Valiant. A theory of the learnable. Communications of the ACM,
27(11), pp. 1134-1142, 1984.

[VC71] V. N. Vapnik, A. Y. Chervonenkis, On the uniform convergence of relative
frequencies of events to their probabilities. theory of Probability and its
Applications, 16(2), pp. 264-280, 1971.

[W] E. W. Weisstein. Gamma Function. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/GammaFunction.html.

[WD81] R. S. Wenocur, R. M. Dudley. Some special Vapnik-Chervonenkis classes,
Discrete Math., 33, pp. 313-318, 1981.

Active Learning in the Non-realizable Case

Matti Kääriäinen

Department of Computer Science
University of Helsinki

matti.kaariainen@cs.helsinki.fi

Abstract. Most of the existing active learning algorithms are based on
the realizability assumption: The learner’s hypothesis class is assumed
to contain a target function that perfectly classifies all training and test
examples. This assumption can hardly ever be justified in practice. In
this paper, we study how relaxing the realizability assumption affects
the sample complexity of active learning. First, we extend existing re-
sults on query learning to show that any active learning algorithm for
the realizable case can be transformed to tolerate random bounded rate
class noise. Thus, bounded rate class noise adds little extra complica-
tions to active learning, and in particular exponential label complexity
savings over passive learning are still possible. However, it is questionable
whether this noise model is any more realistic in practice than assuming
no noise at all.

Our second result shows that if we move to the truly non-realizable
model of statistical learning theory, then the label complexity of active
learning has the same dependence Ω(1/ε2) on the accuracy parameter ε
as the passive learning label complexity. More specifically, we show that
under the assumption that the best classifier in the learner’s hypothe-
sis class has generalization error at most β > 0, the label complexity
of active learning is Ω(β2/ε2 log(1/δ)), where the accuracy parameter
ε measures how close to optimal within the hypothesis class the active
learner has to get and δ is the confidence parameter. The implication of
this lower bound is that exponential savings should not be expected in
realistic models of active learning, and thus the label complexity goals
in active learning should be refined.

1 Introduction

In standard passive (semi)supervised learning, the labeled (sub)sample of train-
ing examples is generated randomly by an unknown distribution defining the
learning problem. In contrast, an active learner has some control over which ex-
amples are to be labeled during the training phase. Depending on the specifics
of the learning model, the examples to be labeled can be selected from a pool of
unlabeled data, filtered online from a stream of unlabeled examples, or synthe-
sized by the learner. The motivation for active learning is that label information
is often expensive, and so training costs can potentially be reduced significantly
by concentrating the labeling efforts on examples that the learner considers use-
ful. This hope is supported by both theoretical and practical evidence: There

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 63–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 M. Kääriäinen

exist active learning algorithms that in certain restricted settings give provably
exponential savings in label complexity [1, 2, 3, 4], and also a variety of heuris-
tic methods that at least sometimes give significant label complexity savings in
practice (see, e.g., [5] and the references therein).

Unfortunately, there is a huge gap between the theory and the practice of
active learning, even without considering computational complexity issues. The
theoretical methods rely on unrealistic assumptions that render them (or at least
their analysis) inapplicable to real life learning problems, while the practically
motivated heuristics have no associated theoretical guarantees and indeed often
fail miserably. One of the most unrealistic assumptions common to virtually all
theoretical work in active learning is the realizability (or PAC) assumption, i.e.,
the assumption that the correct labeling is given by a target function belonging
to a known hypothesis class F . The realizability assumption is never true in
practice— at least we are aware of no real world problem in which it could be
justified — and seems to lead to fragile learning algorithms that may and often
do completely break down when the problem turns out to be non-realizable.
Thus, relaxing the realizability assumption is a necessary first step in making
the theory of active learning relevant to practice.

Many relaxations to the realizability assumption have been studied in passive
learning, but it is not at all clear which of them leads to the best model for
active learning. If the assumptions are relaxed too little, the theory may remain
inapplicable. On the other hand, if no restrictions on noise are imposed, learning
becomes impossible. In this paper, we try to chart where exactly the fruitful
regime for active learning resides on the on the range between full realizability
and arbitrary adversarial noise. To this end, we study two relaxations to the
realizability assumption, both adapted to active learning from passive learning.

First, we show that in the model of bounded rate class noise [6], active learn-
ing is essentially as easy as in the realizable case, provided that the noise is
non-persistent, i.e., each label query is corrupted independently at random. The
key idea is to cancel out the noise by repeating each query a sufficient number of
times and using the majority of the answers as a proxy for the true label. This
way, any active learning algorithm for the realizable case can be transformed to
tolerate bounded rate class noise with the cost of increasing the label complex-
ity by a factor that has optimal dependence on the noise rate and logarithmic
dependence on the original label complexity in the realizable case. Applying the
transformation to an optimal algorithm for the realizable case yields a close to
optimal algorithm for the bounded rate class noise case, so there is no need to
design active learning algorithms for the bounded rate class noise model sepa-
rately. Our strategy of repeated queries is a simplification of a similar strategy
independently proposed in the query learning context [7], but unlike the earlier
solution, our adaptive sampling based strategy requires no prior knowledge on
the noise rate nor a separate step for estimating an upper bound for it.

The noise cancelling transformation makes the bounded rate class noise model
look quite suspicious: In theory, the strategy of repeated queries is close to opti-
mal, yet in practice it would most likely fail. The reason for the likely failure is

Active Learning in the Non-realizable Case 65

of course that in reality non-realizability is rarely caused by random noise alone.
Instead, non-realizability typically arises also from the aspects of the learning
problem that are not sufficiently well understood or well-behaved to be mod-
elled accurately. In case none of the models fits the learning problem perfectly,
justifying assumptions on how exactly the modelling assumptions (say, linear
separability in feature space) are violated is hard. To cope with such deviations,
a more general model for non-realizability is needed.

In the model of statistical learning theory [8] the data is assumed to be gener-
ated iid by some unknown distribution that defines the learning problem, but the
relationship between the objects and the labels is only implicitly assumed to be
approximately representable by some classifier in the learner’s hypothesis class.
This model has been very fruitful in passive learning: Not only has it resulted in
a body of new interesting theory, but also in many successful algorithms (e.g.,
soft-margin SVMs) that indeed seem to handle the types of non-realizability
encountered in practice quite nicely. We believe similar success is possible also
in active learning. Firstly, the empirical observation that the statistical learning
theory model fits nicely into many real learning problems (in the sense that the
algorithms developed within the model work well in practice) remains true in
the active learning case, as the learning problems are more or less the same.
Secondly, recent results show that the model is benevolent enough to make non-
trivial positive results in active learning possible. In particular, [4] presents an
algorithm for the statistical learning theory framework that exhibits exponential
label complexity savings, but only until a certain accuracy threshold is reached.
Whether exponential savings are possible on all accuracy levels, i.e., whether
active learning can improve the learning rate in the statistical learning theory
framework, is an open question.

The main contribution of this paper is to show that the kind of exponential
label complexity savings that can sometimes be obtained in the realizable case1

are not possible if true non-realizable as in the statistical learning theory model is
allowed. We show that if the realizability assumption is relaxed by assuming that
the learning problem is such that the generalization error of the best classifier in
the hypothesis class F is at most β, then the expected label complexity on some
such problems has to be at least Ω(β2/ε2) to guarantee that the generalization
error of the hypothesis output by the active learner is within ε of optimal in F .
We show this even in the noise-free case, i.e., when the labels are fully determined
by a target function (possibly outside F), thus showing that the lower bound
arises from non-realizability per se and not random noise as is the case with the
lower bound for learning with membership queries in [9]. Also, the lower bound
remains true even when the unlabeled examples are uniformly distributed.

If only the dependence on ε is concerned, the lower bound matches the upper
bound O(1/ε2) for passive learning. Thus, allowing true non-realizability makes
active learning require the same order of labeled examples as passive learning
does, which is in huge contrast to the realizable case in which exponential sav-
ings are sometimes known to be possible. This justifies our choice of not studying

1 And in the bounded rate class noise case by our noise-cancelling transformation.

66 M. Kääriäinen

the more adversarial models of malicious noise that have been studied in pas-
sive learning, since already allowing arbitrary non-malicious errors seems to kill
most of the potential of active learning. Our lower bound matches the above
mentioned upper bound proved in [4] that shows that active learning can drop
the label complexity exponentially even in the truly non-realizable case when
the target accuracy ε is large in comparison to β. Combined, the results show
that active learning can indeed help exponentially much in the initial phase of
learning, after which the gains deteriorate and the speed of learning drops to
match that of passive learning. This prediction is well in line with the empirical
observations that active learning heuristics tend to initially clearly outperform
passive learning algorithms, but become less useful or even harmful as the learn-
ing progresses.

In contrast to the recent label complexity lower bounds of Ω(1/ε) for active
learning in the realizable case [3], our lower bound does not depend on special
properties of F or the data distribution, but applies whenever F contains at
least two classifiers that sometimes agree and that disagree on an unbounded
set. Also, our lower bound is better by a factor of 1/ε, which is to be expected
due to non-realizability.

The rest of the paper is organized as follows. In Section 2, we introduce the
active learning framework used in this paper. Section 3 is devoted to our positive
result, showing how bounded rate class noise can be dealt with. Then, we move on
to the more realistic full non-realizability assumption and prove our lower bound
for that case in Section 4. Finally, the conclusions are presented in Section 5.

2 Learning Model

Throughout the following, we assume that the learning problem is modeled by
a probability distribution P on (object, label) pairs (X,Y) ∈ X × Y, whose
marginal on X is denoted by PX . The goal of the active learning algorithm
is to find a classifier f with small generalization error ε(f) = P(f(X) �= Y)
with respect to this distribution. We compare the generalization error of the
learned classifier to minf∈F ε(f). Here, the hypothesis class F is used only as a
comparison class, so the learner is not restricted to select its classifier from F .
The realizable case is the special case where P(Y = f(X)) = 1 for some f ∈ F .

What differentiates active learning from passive learning is that we assume
that the active learner can choose the examples whose labels it wants to query.
The amount and type of control in choosing the queries varies among different
active learning models and ranges from complete freedom (query learning with
membership queries), to selecting the query points from a pool of unlabeled data
(pool-based active learning), to deciding online which queries to make while
observing a stream of unlabeled data (filtering based active learning). Out of
these variants, different flavors of the last two are considered the central active
learning models.

Each variant of active learning has its own motivation, and since we do not
have to, we will not commit to any one of them. Instead, we formulate our

Active Learning in the Non-realizable Case 67

results so that they apply to a template active learning algorithm that is flexible
enough to cover all the above mentioned active learning models simultaneously.
The template is presented in Figure 1. Here, Teacher(x) denotes the label or-
acle, which according to our assumption of the data being iid samples from P
implies that Teacher(x) ∼ P (Y |X = x), and that the answers of the teacher are
independent given the query points.

ActiveLearn(ε, δ)
U = pool of unlabeled data sampled iid from PX

do
choose query point x ∈ U
query y = Teacher(x)
add more points to U by sampling from PX

while (!stopping condition)
output f ∈ F

Fig. 1. Template for active learning algorithms

The template defines how the active learner can access P . As long as P is
not accessed except as seen in Figure 1, the active learner can be completely
arbitrary and possibly randomized. The gray parts are optional, and the inclusion
or exclusion thereof leads to different restricted models of active learning. More
specifically, including all the gray parts corresponds to the general active learning
algorithm in [3], including the constraint on query points being chosen from U
which itself is not updated corresponds to pool-based active learning, and the
case in which arbitrary label queries are allowed corresponds to query learning.

An active learning algorithm is defined to be (ε, δ)-successful with respect
to a class of learning problems P and a hypothesis class F if, for all learning
problems P ∈ P , the generalization error of the classifier f output by the active
learner is with probability at least 1− δ (over the examples and the randomness
in the learner) within ε of the generalization error of the best classifier in F .
The key quantities of interest to us are the random number n(ε, δ) of queries
to Teacher, also known as the active learning label complexity, and the number
of unlabeled examples m(ε, δ) the active learner samples from PX . Even though
labeled examples are typically assumed to be far more expensive than unlabeled
examples, the latter cannot be assumed to be completely free (since already
processing them costs something). Thus, the goal is to be successful with as
small (expected) n(ε, δ) as possible, while keeping the (expectation of) m(ε, δ)
non-astronomical.

Of course, the difficulty of active learning depends on what we assume of the
underlying task P and also on what we compare our performance to. In our
definition, these are controlled by the choice of P and the comparison class F .
One extreme is the realizability assumption that corresponds to the assumption
that

PF = {P | ∃f ∈ F : P (f(X) = Y) = 1},
and choosing the comparison class to be the same F in which the target is as-
sumed to reside. As already mentioned, in this special case exponential savings

68 M. Kääriäinen

are possible in case F is the class of threshold functions in one dimension [1].
Also, if F is the class of linear separators going through the origin in Rd, and in
addition to realizability we assume that the distribution PX is uniform on the
unit sphere of Rd, successful active learning is possible with and n = O(log(1/ε))
label queries and m = O(1/ε) unlabeled examples, whereas the same task re-
quires n = Ω(1/ε) labeled examples in passive learning. Here, the dependence
on all other parameters like d and δ has been abstracted away, so only the rate
as a function of the accuracy parameter ε is considered. For algorithms achieving
the above mentioned rates, see [2, 3].

The above cited results for the realizable case show that active learning can in
some special cases give exponential savings, and this has lead some researchers to
believe that such savings might be possible also for other function classes, with-
out assumptions on PX , and also without the realizability assumption. However,
there is little concrete evidence supporting such beliefs.

3 Positive Result

Let us first replace the realizability assumption by the bounded rate class noise
assumption introduced in the case of passive learning in [6]. More specifically, we
assume that there exists a function f ∈ F such that P(Y = f(X)|X) = 1−η(X),
where η(X) < 1/2 is the noise rate given X . Since η(X) < 1/2, the optimal Bayes
classifier is in F .

The main technique we use to deal with the noise is applying an adaptive
sampler to find out the “true” labels based on the teacher’s noisy answers. In
contrast to passive sampling, the sample size in adaptive sampling is a random
quantity that may depend on the already seen samples (more technically, a
stopping time). Adaptive samplers have been studied before in [10] in more
generality, but they give no explicit bounds on the number of samples needed
in the special case of interest to us here. To get such, we present a refined and
simplified version of their general results that applies to our setting.

Lemma 1. Suppose we have a coin with an unknown probability p of heads.
Let δ > 0. There is an adaptive procedure for tossing the coin such that, with
probability at least 1− δ

1. The number of coin tosses is at most

ln(2/δ)
4(1/2− p)2

log
(

ln(2/δ)
4(1/2− p)2

)
= Õ

(
ln(2/δ)

4(1/2− p)2

)
.

2. The procedure reports correctly whether heads or tails is more likely.

Proof. Consider the algorithm of Figure 2. By the Hoeffding bound, p ∈ Ik with
probability at least 1−δ/2k+1, and thus by the union bound the invariant p ∈ Ik

is true for all k with probability at least 1 − δ. Provided that this invariant is
true, the algorithm clearly cannot output an incorrect answer. And by the same

Active Learning in the Non-realizable Case 69
AdaptiveQuery(δ)
set n0 = 1 and toss the coin once;
for k = 0, 1, . . .

pk = frequency of heads in all tosses so far

Ik = [pk −
√

(k+1) ln(2/δ)
2k , pk +

√
(k+1) ln(2/δ)

2k]
if(0.5 �∈ Ik) break
toss the coin nk more times, and set nk+1 = 2nk

end
if(Ik ⊂ [−∞, 0.5]) output TAILS
else output HEADS

Fig. 2. Procedure for determining the more likely outcome of a coin

invariant, due to the length of Ik decreasing toward zero, the algorithm will
output something after at most the claimed number of coin tosses (in the special
case p = 1/2 the algorithm will keep tossing the coin indefinitely, but in this
case the bound on the number of tosses is also infinite). ��

Note that the adaptive sampler of the above lemma is almost as efficient as
passive sampling would be if |p−1/2| was known in advance. Our positive result
presented in the next theorem uses the adaptive sampler as a noise-cancelling
subroutine. A similar method for cancelling class noise by repeated queries was
independently presented in the query learning context in [7]. However, their
strategy uses passive sampling, and thus either requires prior knowledge on |p−
1/2| or a separate step for estimating a lower bound for it. Due to their method
needing extra samples in this separate estimation step, our proposed solution
will have a smaller total sample complexity.

Theorem 1. Let A be an active learning algorithm for F that requires n(ε, δ)
label queries and m(ε, δ) unlabeled examples to be (ε, δ)-successful in the realizable
case. Then A can be transformed into a noise-tolerant (ε, δ)-successful active
learner A′ for the class of distributions obtained by adding bounded rate class
noise to the distributions on which A is successful. With probability at least 1−δ,
the unlabeled sample complexity m′(ε, δ) of A′ is m(ε, δ/3), and if the noise rate
is upper bounded by α < 1/2, then the label complexity n′(ε, δ) of A′ is at most

n′(ε, δ) = Õ

(
ln(18E[n(ε,δ/3)]

δ2)
4(1/2− α)2

)
n(ε, δ/3).

Proof. We transform A to A′ by replacing each label query Teacher(x) made by
A by a call to AdaptiveQuery(δ′), where the role of the coin is played by the
teacher that is corrupted by noise. By choosing δ′ appropriately, we can ensure
that if A does not make too many label queries, then all calls to AdaptiveQuery
give the correct answer with sufficiently high probability, and thus A′ outputs
exactly the same answer in the noisy case as A would have done in the realizable
case. We next show how this can be done in detail.

First split δ into three equal parts, covering the three ways in which the
modified active learner A′ simulating the behavior of A may fail. The simulation

70 M. Kääriäinen

A′ may fail because A fails in the realizable case, A makes dramatically more
label queries than expected, or one or more invocations to the adaptive sampling
procedure of Lemma 1 used in the simulation fails. The first case can be covered
by setting the parameters of A in the simulation to (ε, δ/3). For the second case,
we use Markov’s inequality which implies that the probability of the inequality
n(ε, δ/3) ≤ 3/δ · E[n(ε, δ/3)] failing is at most δ/3. In case it does not fail, we
have an upper bound for the number of invocations to Lemma 1, and so splitting
the remaining δ/3 to the invocations of the adaptive sampler lets us choose
its confidence parameter to be δ′ = δ2/(9E[n(ε, δ/3)]). A simple application of
the union bound then shows that the total probability of any of the failures
happening is at most δ.

In case the no bad event happens, Lemma 1 shows that each of its invocations
requires at most

Õ

(
ln(18E[n(ε,δ/3)]

δ2)
4(1/2− α)2

)
calls to the noisy teacher. Also, if all these invocations give the correct answer,
then A′ behaves exactly as A, so the total number of label queries will be the
label complexity n(ε, δ/3) of A in the realizable case times the above, giving the
label complexity in the theorem statement. By the same argument of identical
behavior, the number of unlabeled examples m′(ε, δ) required by A′ is m(ε, δ/3).

To complete the proof, it remains to observe that since the noise rate is
bounded, the true target f ∈ F in the realizable case is still the best possi-
ble classifier in the bounded class noise rate case. Thus, provided that none of
the bad events happens, the fact that A provides an ε-approximation to the tar-
get in the realizable case directly implies that A′ provides an ε-approximation
to the best function in F in the noisy case. ��

The above theorem shows that allowing bounded rate class noise increases the
active learning label complexity only by at most a multiplicative factor deter-
mined by the bound on the noise rate α and the logarithm of the label complexity
of the active learning algorithm for the realizable case. Thus, for α < 1/2 and
neglecting logarithmic factors, the order of label complexity as a function of ε
is unaffected by this kind of noise, so exponentially small label complexity is
still possible. As the lower bound presented in the next section shows that the
dependence on α is optimal, at most a logarithmic factor could be gained by
designing active learners for the bounded rate class noise model directly instead
of using the transformation.

Interestingly, it has been recently shown that if the noise rate is not bounded
away from 1/2 but may approach it near the class boundary, then exponential
label complexity savings are no longer possible [11]. Thus, relaxing the conditions
on the noise in this dimension any more is not possible without sacrificing the
exponential savings: the optimal classifier being in F is not enough, but the noise
rate really has to be bounded.

It can be claimed that the way A′ deals with class noise is an abuse of the
learning and/or noise model, that is, that A′ cheats by making repeated queries.

Active Learning in the Non-realizable Case 71

It may be, for example, that repeated queries are not possible due to practical
reasons (e.g., teacher destroys the objects as a side effect of determining the
label). Also, it might be more natural to assume that the teacher makes ran-
dom errors, but is persistent in the sense that it always gives the same answer
when asked the same question. However, such persistently noisy answers define
a deterministic labelling rule for all objects, so once the teacher is fixed, there
is no randomness left in the noise. Thus, this kind of persistent noise is more
naturally dealt with in the model of statistical learning theory that allows true
non-realizability.

While the strategy of repeated queries looks suspicious and unlikely to have
wide applicability in practice, we believe it is an artifact of suspicious modelling
assumptions and should not be prohibited explicitly without additional reasons.
It seems to us that even strategies that are not explicitly designed to use re-
peated queries may actually choose to do so, and thus great care should be
taken in their analysis if repetitions are not permissible in the intended applica-
tions. As a special case, the number of times an object appears in the pool or
stream of unlabeled data should not be automatically taken as an upper bound
for the number of queries to the object’s label — the original motivation for re-
stricting label queries to unlabeled objects that occur in the sample from PX

was to control the difficulty of the queries [1], and repetitions hardly make a
query more difficult. It is also noteworthy that in the regression setting the anal-
ogous phenomenon of repeated experiments is more a rule than an exception in
optimal solutions to experimental and sequential design problems [12], whereas
nonrepeatable experiments are handled as a separate special case [13]. The suc-
cess of the experimental design approach suggests that maybe there is place for
repeatable queries in active learning, too, and that repeatable and nonrepeat-
able queries definitely deserve separate treatment. While it is unclear to us how
the case of nonrepeatable queries can be dealt with efficiently, the next section
provides some idea of the difficulties arising there.

4 Negative Result

Let’s now move on to true non-realizability and assume only that the learning
task P is such that F contains a classifier with a small generalization error of
at most β on P . That is, the class of distributions on which we wish the active
learner to be successful is

PF,β = {P | ∃f ∈ F : P (f(X) �= Y) ≤ β}.

This class allows the target Y to behave completely arbitrarily at least on a set
of objects with probability β. A related class of interest to us is

Pdet
F,β = {P ∈ PF,β | ∃g : P (Y = g(X)) = 1},

in which random noise is excluded by postulating that Y is a function of X .
This class models a situation in which the phenomenon to be learned is known

72 M. Kääriäinen

to be deterministic, but only approximable by F (e.g., learning the conditions
on inputs under which a deterministic computer program crashes).

The role of β is very similar to the role of the bound α on the noise rate in the
previous section. While β has a natural interpretation as the best generalization
performance achievable by F , it should not be thought of as a parameter known
to the learner. Rather, the idea is to study active learning under the unrestricted
non-realizability assumption (corresponding to the case β = 1), and just express
the lower bounds of such methods in terms of β.

The question we analyze in this section is the following: Assuming P ∈ PF,β

or P ∈ Pdet
F,β, what is the expected number of label queries needed to actively

learn a classifier from F whose generalization error is with probability at least
1− δ within ε from the optimum in F?

4.1 Lower Bound for the Noisy Case

In this section we introduce the ideas needed for the lower bound in the case of
deterministic non-realizability by considering the simpler case in which random
noise is allowed. The special case β = 1/2− ε follows directly from lower bounds
for learning with membership queries presented in [9], but the case of general
β > 0 is to our knowledge new even when random noise is allowed.

The problem we study is predicting whether a coin with bias 1/2± ε is biased
toward heads or tails2. This corresponds to the case where β = 1/2−ε and PX is
concentrated on a single point x0 ∈ X on which not all the classifiers in F agree.
We further assume that P (Y |X = x) for x �= x0 is the same for both possibilities
of P (Y |X = x0) and that the learner knows it only has to distinguish between
the two remaining alternative distributions P , so queries to objects other than
x0 provide no new information.

Intuitively, it seems clear that an active learner cannot do much here, since
there is nothing but x0 to query and so the only control the learner has is the
number of queries. Indeed, by a known result from adaptive sampling mentioned
in [10], an active learner still needs an expected number of Ω(1/ε2) label queries
in this case, and thus has no advantage over passive learning.

The above argument gives a lower bound for the special case P ∈ PF,1/2,
provided |F | ≥ 2. Adapting the argument for general β can be done as follows.
Suppose F contains two classifiers, say, f0 and f1, that sometimes agree and
sometimes disagree with each other— this is always true if |F | > 2. Place PX -
probability 2β on an object x0 on which f0 and f1 disagree, and the remaining
PX -probability 1 − 2β on an object x1 on which they agree. Now, embed the
above coin tossing problem with ε/β in place of ε to the object x0 on which f0
and f1 disagree, and let both f0 and f1 be always correct on x1. This way, the
best classifier in F has error at most β — the better of the classifiers f0 and f1
errs at most half the time on x0 and neither errs on x1. By the coin tossing lower
bound, Ω(β2/ε2) label queries are needed to find out whether f0 or f1 is better,

2 This learning problem is also a simple example of a case in which prohibiting repeated
queries or insisting on persistence of noise makes no sense.

Active Learning in the Non-realizable Case 73

even assuming the learner never wastes efforts on querying any other points. As
the active learner fails to achieve accuracy ε if it chooses incorrectly between f0
and f1, a lower bound Ω(β2/ε2) for active learning for P ∈ PF,β follows.

The above lower bound leaves open the possibility that the difficulties for
active learning are caused by high noise rates, not by non-realizability per se.
This is a significant weakness, since even though non-realizability can rarely be
circumvented in practice, noise-free problems are quite common, e.g., in the ver-
ification domain. In such cases, it is reasonable to assume that there really exists
a deterministic target, but that it cannot be expected to lie in any sufficiently
small F . In the next section, we will extend our lower bound to such cases by
essentially derandomizing the arguments outlined above.

4.2 Lower Bound for Deterministic Targets

The lower bound for deterministic targets builds on the techniques used in prob-
ing a lower bound for adaptive sampling [14]. In adaptive sampling, the task is to
estimate the fraction of inputs that make an unknown boolean function output 1
by querying the values of the function on inputs chosen by an arbitrary adaptive
randomized algorithm. Such adaptive samplers can be used, e.g., to estimate the
number of rows returned by a query to a database without going through the
whole database.

By viewing the unknown boolean function whose bias is to be estimated as
the target and assuming PX is uniform on the domain of this function, it can
be seen that adaptive sampling is very close to active learning with queries
under uniform distribution. The only difference is that to be (ε, δ)-successful,
an adaptive sampler is required to output an ε-approximation of the bias of the
unknown function with probability at least 1− δ, whereas an active learner has
to approximate the unknown function and not only its bias.

It is clear that an active learner can be used to solve the seemingly easier
task of adaptive sampling, but the other direction that we would need here is
less obvious. Hence, we take a different route and instead look directly at the
problem that underlies the difficulty of adaptive sampling according to the proof
in [14]. Using our terminology, the lower bound for adaptive sampling is proved
there through the following result:

Theorem 2. Let ε ≤ 1
8 , δ ≤ 1

6 , and assume the sample complexity n of the
sampler is at most

√
M/4 for some large enough M . Let PX be the uniform

distribution on a set X of size M . Consider target functions

g ∈ G =
{
g : X → {0, 1} | PX(g(X) = 1) =

1
2
± ε

}
Then any randomized adaptive sampling algorithm for the task of determining
the bias of any such target g ∈ G correctly with probability at least 1− δ requires
on some g ∈ G an expected sample complexity of at least Ω

(1
ε2 ln 1

δ

)
.

Theorem 2 implies a lower bound for adaptive sampling, since an (ε, δ)-successful
adaptive sampler solves the above decision problem as a special case. However,

74 M. Kääriäinen

in case of active learning, we need a strengthened version of Theorem 2 that is
fortunately also implied by exactly the same proof presented in [14] (see espe-
cially the beginning of the proof of Theorem 1 therein). Namely, the proof in [14]
shows that the lower bound applies also to the version of the decision problem
in which the adaptive sampler is required only to give the correct answer with
probability at least 1− δ with respect to its internal randomness and the choice
of g from the uniform distribution on G. To solve this modified problem, even
the simplistic strategy of first running an active learner that outputs an f and
then predicting that PX(g(X) = 1) = 1/2 + ε iff PX(f(X) = 1) > 1/2 suffices.
More exactly, it can be shown that the probability of the event that the bias
of the learned f differs from that of the randomly chosen target g ∈ G is at
most δ. This is accomplished by the following lemma, in which the boundedness
assumption on label complexity can be replaced by an application of Markov’s
inequality if desired.

Lemma 2. LetAbean (ε/2, δ/2)-successful active learningalgorithmforPdet
F,1/2−ε,

where F contains the constant classifiers 0 and 1. Suppose that the label complexity
n(ε/2, δ/2) of A is bounded by N < ∞. Suppose X is infinite and PX is a uniform
distribution on a sufficiently large finite set X0 ⊂ X . Then, the probability that the
biasof theclassifierf outputbyA is thesameas thebiasof the targetchosenuniformly
at random from

G0 = {g : X → {0, 1} | PX(g(X) = 1) =
1
2
± ε and g(x) = 0 for x �∈ X0 }

is at most δ.

Proof (Sketch). As F contains the constant classifiers 0 and 1, the minimal
generalization error achievable using F is always at most 1/2−ε on any target g ∈
G0. Thus, for each such g ∈ G0, A can output a classifier f with generalization
error larger than 1/2 − ε/2 on the learning problem defined by PX and g with
probability at most δ. Since this holds for each g ∈ G0, we can let g be chosen
randomly to get P(ε(f) ≥ 1/2− ε/2) ≤ δ, where P now denotes probability with
respect to randomness in A (internal and that caused by the random choice of
U if such is used) and the choice of g from the uniform distribution over G0.

Let B denote whether a classifier is biased toward 0 or 1, i.e., B(f) = 1
iff PX(f(X) = 1) ≥ 1/2 and B(f) = 0 otherwise. Conditioning on whether
B(f) = B(g) or not, we get from the previous inequality that

δ ≥ P

(
ε(f) ≥ 1

2
− ε

2

)
= P

(
ε(f) ≥ 1

2
− ε

2

∣∣B(f) = B(g)
)

P (B(f) = B(g))

+ P

(
ε(f) ≥ 1

2
− ε

2

∣∣B(f) �= B(g)
)

P (B(f) �= B(g))

≥ P

(
ε(f) ≥ 1

2
− ε

2

∣∣B(f) �= B(g)
)

P (B(f) �= B(g)) ,

implying P(B(f) �= B(g)) ≤ δ
P(ε(f)≥1/2−ε/2|B(f) �=B(g)) . Thus, to show that the

probability of the event B(f) �= B(g)— that is, the event that using the strategy

Active Learning in the Non-realizable Case 75

of predicting that the bias of g is that of f fails— has probability at most 2δ, it
suffices to show that

P(ε(f) ≥ 1/2− ε/2|B(f) �= B(g)) ≥ 1/2. (1)

We outline an argument showing this next.
Let S ⊂ X denote the (random) set of points that A queries. We can assume

that S ⊂ X0, since points outside X0 provide no information about g and can
thus be ignored in the analysis. Also, since we assume |S| ≤ N , we can take X0
so large that fraction of |S|/|X0| is arbitrarily small. Note that f can depend on
the values of the target g on S only, but not on its values outside S as these
are never observed by A. Thus, for each choice of f , S, and the values of g on
S observed by A, the number of errors f makes on X0 \ S is a random variable
whose distribution is induced by the distribution of g conditioned on the values
of g on S and the underlying conditioning event B(g) �= B(f).

Now we apply the fact that X0 can be made so large in comparison to S that
the values of g and f on S do not affect their biases on X0 \S by much. Consider
any x ∈ X0 \ S. If f(x) = B(f), the probability over the choice of g of the event
f(x) �= g(x) is (about) 1/2+ε, and if f(x) �= B(f), the corresponding probability
is (about) 1/2− ε. Thus, since the former case is more probable provided X0 is
large, the expected error of f on X0 \ S is at least almost 1/2. The contribution
of the error of f on S to its overall error can be made arbitrarily small again by
taking X0 large enough, from which it follows that the expected generalization
error of f is, say, at least 1/2− ε/4 for large enough X0. Furthermore, by noting
that the distribution of the error of f on X0 \ S can be expressed in terms of
a hypergeometric distribution whose variance goes to zero as X0 is increased,
it finally follows by Chebysev’s inequality that the probability of the error of
f being larger than 1/2 − ε/2 can be made to be at least 1/2. The details in
all these arguments can be made precise by filling in the calculations on how
much the behavior of f and g on S can affect their behavior outside S given
that |S|/|X0| is small, but we omit the tedious details in this draft.

Since the above is true whatever set S the algorithm A decides to query, what-
ever answers it receives, and what classifier f it chooses, we get inequality (1),
finally concluding the proof. ��

The above lemma shows how an (ε/2, δ/2)-successful active learner for the class
of distributions Pdet

F,1/2−ε can be used to solve the average-case version of the
decision problem of Theorem 2 discussed after the theorem statement, provided
that F contains the constant classifiers 0 and 1. This assumption can be replaced
by assuming F contains any two classifiers that are complements of each other,
since detecting which of these is closer to the target is equivalent to detecting
the bias. Furthermore, we can move the target to within β of F by the same
trick we used in Section 3 by embedding the bias detection problem to a subset
of X that has probability 2β, and putting the rest of the probability mass on
a point on which the classifiers agree. These steps together give us the desired
lower bound stated below:

76 M. Kääriäinen

Theorem 3. Let A be an active learning algorithm. Let ε ≤ 1/8, δ ≤ 1/6,
suppose the label complexity n(ε, δ) of A is uniformly bounded for each (ε, δ),
and let the unlabeled label complexity m(ε, δ) be arbitrary. Suppose F is such
that it contains two functions f0, f1 that agree at least on one point and disagree
on infinitely many points. Let β > 0 and suppose A is successful for Pdet

F,β. Then,
for some PX and target function g, the expected number of n(ε, δ) is

Ω

(
β2

ε2
ln

1
δ

)
.

The lower bound applies to all active learning algorithms and is not specific
to, say, empirical risk minimization, or to any specific hypothesis class. Also, it
is easy to see by replacing the point masses in X0 by a partition of {x ∈ X |
f0(x) �= f1(x)} into equiprobable sets that the lower bound immediately extends
to a wide range of distributions PX (including, e.g., all continuous distributions),
and remains true even if PX is known in advance. Thus, the lower bound does
not result from any specific properties of PX , and cannot be circumvented by
any amount of unlabeled data. As an interesting special case, the lower bound
applies to learning linear separators with uniform distribution, the best known
case in which exponential savings are possible under the realizability assumption.
However, the lower bound becomes interesting only when ε � β, so it does not
rule out exponential speed-ups in the low accuracy regime. This fits perfectly
together with the label complexity upper bounds for an active learning algorithm
for linear thresholds presented in [4], where it is shown that exponential speed-
ups are indeed possible when ε > const ·β, after which their upper bound on the
learning speed degrades to match the above lower bound (up to constants).

The fact that the lower bound depends on β is unavoidable, since if the target
is only slightly outside F , the learner will with high probability fail to even notice
the non-realizability. This case is of real importance when using the covering
approach for active learning in the realizable case [3]. Making the covering finer
as a function of ε corresponds to enlarging the covering of the underlying F that
the algorithm uses as its hypothesis class so that β goes to zero as the accuracy
requirements get stricter. This eliminates the effects of the lower bound, but is
of course only possible if we know a suitably small class F for which the problem
is realizable in advance. In case the target is truly unknown, circumventing the
lower bound by extending F is not possible.

5 Conclusions

We have shown that bounded rate class noise can be relatively easily dealt with
by using repeated label queries to cancel the effects of the noise, but that in
the truly non-realizable case active learning does not give better rates of sample
complexity than passive learning when only the dependence on the accuracy
and confidence parameters is considered. However, even though the lower bound
rules out exponential savings in the non-realizable case, the bound leaves open
the possibility of reducing the label complexity by at least a factor of β2 or more

Active Learning in the Non-realizable Case 77

as the complexity of F is not reflected in the lower bound. In practice, even such
savings would be of great value. Thus, the lower bound should not be interpreted
to mean that active learning does not help in reducing the label complexity in
the non-realizable case. Instead, the lower bound only means that the reductions
will not be exponential, and that the goal of active learning should be readjusted
accordingly.

The results in this paper are only a first step toward a full understanding of
the label complexity of active learning under various noise models. In particular,
it would be interesting to see how the complexity of F and other kinds of noise
(noise in objects, malicious noise, . . .) affect the active learning label complexity.

References

1. Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sam-
pling using the query by committee algorithm. Machine Learning, 28(2-3):133–168,
1997.

2. Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of
perceptron-based active learning. In COLT’05, pages 249–263. Springer-Verlag,
2005.

3. Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In
NIPS’05, 2005.

4. Nina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In
ICML, 2006. Accepted.

5. Simon Tong and Daphne Koller. Support vector machine active learning with
applications to text classification. Journal of Machine Learning Research, 2:45–66,
2002.

6. Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,
2(4):343–370, 1987.

7. Yasubumi Sakakibara. On learning from queries and counterexamples in the pres-
ence of noise. Information Processing Letters, 37(5):279–284, 1991.

8. Vladimir N. Vapnik. Estimation of Dependencies Based on Empirical Data.
Springer-Verlag, 1982.

9. Claudio Gentile and David P. Helmbold. Improved lower bounds for learning from
noisy examples: an information-theoretic approach. In COLT’98, pages 104–115.
ACM Press, 1998.

10. Carlos Domingo, Ricard Gavaldà, and Osamu Watanabe. Adaptive sampling meth-
ods for scaling up knowledge discovery algorithms. In DS’99, pages 172–183.
Springer-Verlag, 1999.

11. Rui Castro, March 2006. Personal communication.
12. Samuel D. Silvey. Optimal Design. Chapman and Hall, London, 1980.
13. Gustaf Elfving. Selection of nonrepeatable observations for estimation. In Proceed-

ings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 69–75, 1956.

14. Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algo-
rithms for estimating the average. Information Processing Letters, 53(1):17–25,
1995.

How Many Query Superpositions Are Needed to
Learn?

Jorge Castro

Software Department. Universitat Politècnica de Catalunya. Campus Nord, 08034
Barcelona, Spain

castro@lsi.upc.edu

Abstract. This paper introduces a framework for quantum exact learn-
ing via queries, the so-called quantum protocol. It is shown that usual
protocols in the classical learning setting have quantum counterparts. A
combinatorial notion, the general halving dimension, is also introduced.
Given a quantum protocol and a target concept class, the general halv-
ing dimension provides lower and upper bounds on the number of queries
that a quantum algorithm needs to learn. For usual protocols, the lower
bound is also valid even if only involution oracle teachers are considered.
Under some protocols, the quantum upper bound improves the classical
one. The general halving dimension also approximates the query com-
plexity of ordinary randomized learners. From these bounds we conclude
that quantum devices can allow moderate improvements on the query
complexity. However, any quantum polynomially query learnable con-
cept class must be also polynomially learnable in the classical setting.

1 Introduction

A central topic in quantum computation concerns the query complexity of oracle
machines. Often it is assumed that a quantum device can get partial information
about an unknown function making some type of oracle calls. The broad goal is
to take advantage of quantum mechanic effects in order to improve the number
of queries (or oracle calls) that an ordinary algorithm needs to find out some
characteristic of the hidden function. In some cases it has been proved that
exponentially fewer black-box oracle calls (also called membership queries) are
required in the quantum model, see for instance [13, 18]. On the other hand, there
are tasks that do not accept huge improvements on the query complexity. For
example, it is known that the quadratic speedup of Grover’s quantum algorithm
for database search is optimal [14]. Furthermore, quite general lower bounds on
the number of oracle interactions have been also obtained [1, 7, 9].

Quantum concept learning can bee seen as a special case of this type of re-
search where the goal of the algorithm is to figure out which the hidden function
is. Here several results are known. Bshouty and Jackson [12] define a quantum
version of the PAC model and provide a quantum learning algorithm for DNF
that does not require memberships, a type of queries used by its classical coun-
terpart. Servedio and Gortler [17] show lower bounds on the number of oracle

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 78–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

How Many Query Superpositions Are Needed to Learn? 79

calls required to learn on the quantum PAC setting and on the more demanding
scenario of exact learning from membership queries. For both specific learning
settings they conclude that dramatic improvements on the number of oracle in-
teractions are not possible. Ambainis et al. [2] and Atici and Servedio [4] give
non-trivial upper bounds for quantum exact learning from membership queries.
Finally, Hunziker et al. [16] show a general technique for quantum learning from
memberships and restricted equivalences that is shown to need, in a couple of
specific cases, less number of queries than is possible classically.

This paper has two goals. The first one is to introduce a general framework
for quantum exact learning via queries which sets when a class of queries can be
considered to define a learning game played by quantum devices. We note that,
as far as we know, the only queries that have been used in the literature have
been memberships [2, 4, 16, 17] and restricted equivalences [16]. This contrasts
with the classical setting where a rich variety of queries have been considered,
see for instance Angluin [3]. The second goal is to study the number of queries
(or query complexity) required by exact learners. Our aim is to obtain lower and
upper bounds on the query complexity that are valid under any choice of queries
defining the learning game.

According to the first goal, we introduce in Sect. 3 the quantum protocol
concept, a notion that allows us to define a learning game played by quan-
tum machines where popular queries from the classical setting, as memberships,
equivalences, subsets and others defined in [3] have natural quantum counter-
parts. Specific quantum protocols for these queries are presented. Learning games
defined by quantum protocols for memberships and memberships and restricted
equivalences agree with learning settings present in the literature [2, 4, 16, 17].

With respect to the second goal, we define in Sect. 4 a combinatorial function,
the general halving dimension, GHdim, having some nice features. In the quan-
tum learning scenario, we show a lower bound for the query complexity in terms
of GHdim that is valid for any quantum protocol and for any target concept class
(Theorem 9). We also show a generic quantum algorithm that achieves learning
on many quantum protocols and provides an upper bound for the query com-
plexity in terms of GHdim (Theorem 14). These lower and upper bounds extend
the previous ones in [4, 17] for the specific protocol of membership queries. In the
classical learning model, we prove that GHdim approximates the query complex-
ity of randomized learners (Theorems 11 and 15). This characterization extends
the previous ones provided by Simon [19] for the specific ordinary protocols of
membership and membership and equivalence queries.

From previous results we state in Sect. 5 the following conclusion. Given an
arbitrary set of queries, quantum learners can allow some gain on the number
of queries needed to learn but huge improvements are not possible. Specifically,
we show that any quantum polynomially query learnable concept class must be
also polynomially learnable in the ordinary setting (Theorem 16). This fact was
only known for membership queries [17].

80 J. Castro

2 Preliminaries

2.1 Basic Definitions

Given a complex number α, we denote by α� its complex conjugate and by |α|
its module. For complex vectors v and w, the l2-norm (Euclidean norm) of v is
expressed by ‖v‖, the l1-norm by ‖v‖1 and the inner product of v and w by 〈v|w〉.
Note that ‖v‖ = 〈v|v〉1/2. Abusing notation, we also denote the cardinality of
a set A by |A|. For b, d ∈ {0, 1} we write b ⊕ d to denote b + d (mod 2). For
n-bit strings x = (x1, . . . , xn) and y = (y1, . . . , yn) we write x ⊕ y to denote
(x1 ⊕ y1, . . . , xn ⊕ yn). The set of all Boolean functions on {0, 1}n is denoted by
Bn. A concept f is a function of Bn. Equivalently, a concept f can be viewed as
the subset {x ∈ {0, 1}n

∣∣ f(x) = 1}. A concept class C is a subset of Bn.

2.2 Classical Exact Learning

In query learning two players, the learner and the teacher, play a game. The
learner is a (classical) randomized algorithm and the teacher is an oracle function.
Some concept class C (the target concept class) is known to both players and
the teacher chooses a concept in C (the target concept) that is unknown to the
learner. The goal of the learner is to find out what concept is, asking the teacher
some type of queries.

A query is a question that the learner poses to the teacher. The most popular
in the literature are membership queries and equivalence queries. Other type
of queries, as subsets, supersets and restricted equivalences, have been defined,
see [3]. In general, the setting of the learning game is complete when the learning
protocol is defined. The protocol is the agreement about which the admissible
queries are and, for each target concept, which the possible answers for such
queries are. Answers provide a property of the target. A teacher is valid for the
target concept f and the protocol P if it replies to each query q choosing one of
the admissible answers in P for q and f .

A concept class C is learnable with k queries under protocol P if there is a
randomized learning algorithm L such that for any f ∈ C and for any valid
teacher T that answers with respect to f using P , with probability at least 2/3
L outputs a circuit h such that h(x) = f(x) for all x ∈ {0, 1}n after at most k
interactions with T . For a class C ⊆ Bn and a protocol P , the query complexity,
is the smallest k such that C is learnable with k queries under P .

2.3 Quantum Computation

Detailed descriptions of quantum Turing machines and quantum oracle com-
putations are provided in [9, 10]. In spite of assuming the reader is familiar
with basic aspects of quantum computers, we provide below a short summary of
essential elements.

To each quantum Turing machine M corresponds an inner-product vector
space S. The vectors of S are superpositions (i.e. finite complex linear combina-
tions) of configurations of M . The complex coefficients defining a vector of S are

How Many Query Superpositions Are Needed to Learn? 81

called amplitudes. The inner-product is defined by given an orthonormal basis
for S, the vectors of this basis are the configurations of M . The time evolution
operator of a quantum Turing machine M is determined by an unitary matrix
UM , which defines a linear operator on S that conserves the distance.

At step j of the computation of M , the time evolution operator UM is applied
to a superposition of configurations (a vector |vj〉 of S). The initial superposition
|v0〉 is the linear combination of configurations having all amplitude value 0
except the only one corresponding to the initial configuration of the machine
that has value 1.

A quantum Turing machine M finishes at step t if the corresponding super-
position |vt〉 only has nonzero amplitudes on final configurations (those whose
state is a final one) and previous superpositions |vj〉 where j < t give amplitude
zero to each final configuration. Let us assume that M finishes at step t and that
|vt〉 =

∑
x αx|x〉 is the corresponding superposition. Now the machine M chooses

to be in a single configuration rather than in a superposition of configurations
making an observation (or measurement). The superposition is then changed so
that a single configuration has amplitude 1 and all others are 0. Formally, the ob-
servation operation provides configuration |x〉 with probability |αx|2. Note that∑

x |αx|2 = 1 because |vt〉 has norm 1 (it is obtained by applying an unitary
operator to an initial superposition |v0〉 that has norm 1).

Oracle Quantum Turing Machine. We follow definitions in [9]. An oracle
quantum Turing machine has a special query tape (that has to accomplish some
rules of behaviour, see [9]) and two distinguished internal states: a pre-query
state p1 and a post-query state p2. A query is executed whenever the machine
enters the pre-query state. In this case, it applies a fixed unitary operator U to
the current contents |q〉 of the query tape, replacing it by U |q〉. In order to ensure
that a single machine cycle ought not to make infinite changes in the tape, we
require that U |q〉 have amplitude zero on all but finitely many basis vectors. The
use of this kind of unitary oracles still provide unitary time evolution for, in other
aspects, well-defined quantum Turing machines. Another natural restriction one
may wish to impose upon U is that it be an involution, U2 = I, so that the
effect of an oracle call can be undone by a further call on the same oracle. This
may be crucial to allow proper interference to take place.

3 Quantum Exact Learning

The learning game is similar to the classical one but now the learner is a quantum
algorithm and the teacher is a quantum oracle function. The game is completely
defined when the learning protocol is provided.

3.1 Quantum Protocols

We show here how to adapt the learning protocol notion [5, 6] to the quantum
setting. A protocol P specifies which the admissible queries are and, for each

82 J. Castro

query, which the valid answers are. Queries belong to a finite set Q, answers
are from a finite set A and P is a subset of Q × A. To each tuple (q, a) of P
corresponds a subset of Bn so-called consistent set and denoted by σa

q . Functions
in σa

q are said to be consistent with tuple (q, a). In the learning game defined
by protocol P , answer a to query q provides the information that the target
function belongs to σa

q . We also denote by Σq the set of consistent sets defined
by the valid answers to query q, so Σq = {σa

q

∣∣ a is an answer for q in P}.
Discussion above encompasses any type of protocol, classical or quantum. A

distinguishing feature of quantum protocols is that different queries can provide
the same information. This is an useless characteristic in the classical scenario,
but it makes possible to define teachers that as quantum oracles, in addition
to be unitary operators are also involutions, a property that one may wish to
impose to a quantum oracle to allow proper interference to take place, as we
have noted in Section 2.3. Queries showing the same information are said to be
equivalent. Formally, given a protocol P ⊆ Q×A, queries qi and qj are equivalent
if their respective sets of consistent function sets defined by their (respective)
valid answers coincide, in short Σqi = Σqj . The equivalence class of query q is
denoted by [q] and the set of equivalence classes by [Q].

Definition 1. A subset P of Q × A defines a quantum protocol iff P satisfies
the following requirements,

1. Completeness: Given a query q of Q and a function f in Bn there exists an
answer a such that (q, a) is a tuple of P and function f is consistent with
(q, a) (in short, f ∈ σa

q).
2. If qi and qj are non-equivalent queries then they do not share any valid

answer.
3. If a is a valid answer for two different queries qi and qj then the consistent

sets of (qi, a) and (qj , a), respectively σa
qi

and σa
qj

, are different.

The completeness requirement is the only one necessary in order to define a
classical protocol. Its justification can be found in [5, 6]. On the other hand, last
two requirements in Definition 1 are specific for the quantum setting and they
impose some compatible behaviour of P with respect to the equivalence relation
it defines on Q. Both are considered by technical convenience (see Lemmas 3
and 4 below).

As first example we consider the protocol consisting of quantum membership
queries (or quantum black-box oracle calls). A quantum black-box oracle for
function f in Bn transforms (x, b) ∈ {0, 1}n × {0, 1} to (x, b ⊕ f(x)). Thus, in
the corresponding protocol the set of queries and the set of answers are both
{0, 1}n × {0, 1}. Valid answers to query (x, b) are (x, 0) and (x, 1). So, tuples of
the protocol are ((x, b), (x, b′)) for all x in {0, 1}n and for all b and b′ in {0, 1}.
The consistent set of answer (x, b′) to query (x, b) is the set of functions that
evaluate to b′ ⊕ b on x. Queries (x, b) and (y, d) are equivalent whenever x = y.
Note that the quantum protocol requirements are trivially satisfied.

A quantum version of the classical equivalence query protocol can be defined
as follows. Given a hypothesis class H , where H is a subset of Bn, queries and

How Many Query Superpositions Are Needed to Learn? 83

answers are tuples (h, x, b) belonging to H × {0, 1}n × {0, 1}. Valid answers to
query (h, x, b) are (h, x⊕y, b) for any y ∈ {0, 1}n and (h, x, 1⊕b). The consistent
set corresponding to answer (h, x⊕ y, b) are those Boolean functions f such that
f(y) �= h(y). The consistent set of answer (h, x, 1⊕ b) has only a single element,
the function h. Note that queries (h, x, b) and (g, z, d) are equivalent whenever
h = g. It is straightforward to see that this defines a quantum protocol. Quantum
protocols for subsets, restricted equivalences, memberships and equivalences, and
other type of popular queries can be defined in a similar way.

3.2 Quantum Teachers

Let P ⊆ Q × A be a quantum protocol. We associate to the set of queries Q a
Hilbert space SQ defined as follows. Vectors of SQ are superpositions of query
vectors |q〉 where q is a query of Q. The inner product of SQ is the one defined
by considering the set of query vectors {|q〉

∣∣ q ∈ Q} as an orthonormal basis.
In a similar way, we also define a Hilbert space SA corresponding to the set of
answers A.

Let f be a Boolean function. A quantum teacher for f under protocol P is an
unitary operator T transforming each basis query vector |q〉 to a superposition in
SA of valid answers according to P that are consistent with f . Quantum teacher
T for f is said to be a permutation teacher whenever it transforms each basis
query |q〉 to a consistent basis answer |a〉. When SQ = SA and the quantum
teacher operator T holds that T 2 = I, we say that T is an involution teacher.
Involution teachers shall correspond with involution oracle gates.

We highlight that classical deterministic teachers for memberships, equiv-
alences, subsets and other popular queries trivially define corresponding per-
mutation teachers in the quantum setting. Note that they are also involution
teachers.

3.3 Query Complexity

A superposition |φ〉 of an oracle quantum machine is said to be a query super-
position if there is a configuration with nonzero amplitude in |φ〉 whose state is
the pre-query one. Let P be a quantum protocol. A concept class C ⊆ Bn is
learnable under protocol P with m query superpositions if there exists an oracle
quantum Turing machine L –so-called learner– such that for any target function
f in C and for any quantum teacher T for f under P :

1. LT gets a final superposition and with probability at least 2/3, outputs a
circuit for f .

2. The computation of LT yields at most m query superpositions.

For target class C and quantum protocol P we define the quantum query
complexity, QC(C,P), as the smallest m such that C is learnable with m query
superpositions under P . We note that this query complexity notion is consistent
with the definition given in Beals et al. [7] (see also Servedio et al. [17]) for
quantum networks.

84 J. Castro

3.4 Answering Schemes

Let P ⊆ Q×A be a quantum protocol.

Definition 2. A subset T of P is said to be an answering scheme if:

1. For any query q ∈ Q there is exactly one answer a such that (q, a) belongs
to T .

2. If (qi, ai) and (qj , aj) are tuples of T and qi and qj are equivalent queries
then (qi, ai) and (qj , aj) define the same consistent set of Boolean functions.

The following lemma is an immediate consequence of the quantum protocol and
the answering scheme definitions.

Lemma 3. Answers of an answering scheme are all different.

Thus, observe that answering schemes extend naturally to unitary transforma-
tions from SQ to SA (see Sect. 3.2 above) and they can be considered as quantum
oracle functions. However, for an answering scheme T it is possible that there is
no function in Bn consistent with all tuples in T . This contrasts with the quan-
tum teacher notion introduced above where there is always a consistent Boolean
function with all teacher answers. As we will see later, answering schemes have
an adversary role in our arguments in Section 4.2.

Let L be a quantum learner under protocol P and let T be an answering
scheme of P . We consider the computation of L when oracle calls are solved
according to T and we denote by LT the resulting quantum oracle machine.
Let |φ〉 be a valid superposition of LT . We define the query magnitude of q in
|φ〉, denoted by wq(|φ〉), as the weight of query q in superposition |φ〉; formally,
wq(|φ〉) =

∑
c |αc|2 where the sum extends over configurations c querying q and

αc denotes the amplitude of c in |φ〉. We naturally extend the query magnitude
concept to query classes: w[q](|φ〉) is the sum of query magnitudes wq′(|φ〉) where
q′ is any query equivalent to q.

For the specific case of membership queries Bennet et al. (Theorem 3.3 in [9])
showed that the final outcome of L’s computations cannot depend very much on
the oracle’s answers to queries of little magnitude. We extend this result to any
quantum protocol in Theorem 5 below. We provide some proof details for two
reasons. First, we think that it is a non-trivial extension of the original theorem
statement. Second, as we point out later, there is an incorrect assertion in the
proof shown in [9]. In the rest of this section, we assume an arbitrary underlying
quantum protocol is given.

Lemma 4. Let |φ〉 be a valid superposition of LT . Let G ⊆ [Q] be a set of query
classes and let T̃ be any answering scheme that agrees with T on any query q
such that [q] /∈ G. Let U and Ũ be, respectively, the unitary time operators of
LT and LT̃ . Then, ‖U |φ〉 − Ũ |φ〉‖2 ≤ 4

∑
[q]∈G w[q](|φ〉).

Proof. Let |E〉 = U |φ〉−Ũ |φ〉 be the error vector. Assume that |φ〉 =
∑

c∈IG αcc+
|ϕ〉 where IG is the set of configurations querying some query equivalent to those
defined byG and |ϕ〉 is a superposition of configurations with no query inG. Then,

How Many Query Superpositions Are Needed to Learn? 85

‖|E〉‖2 =
∑

c,d∈IG

αcα
∗
d〈Uc|Ud〉+

∑
c,d∈IG

αcα
∗
d〈Ũc|Ũd〉

−
∑

c,d∈IG

αcα
∗
d〈Uc|Ũd〉 −

∑
c,d∈IG

αcα
∗
d〈Ũc|Ud〉.

In this expression, by orthogonality the first two summands are both equal
to
∑

[q]∈G w[q](|φ〉). For the last two summands observe that all scalar products
are zero except for those configurations c and d such that Uc = Ũd. Given a
configuration c0 there is at most one d0 where this equality happens because the
answers of an answering scheme are all different, see Lemma 3. Thus, denoting
by J the set of configuration pairs (c0, d0) such that c0, d0 ∈ IG and Uc0 = Ũd0,
it holds that∣∣∣∣∣∣

∑
c,d∈IG

αcα
∗
d〈Uc|Ũd〉+

∑
c,d∈IG

αcα
∗
d〈Ũc|Ud〉

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

(c0,d0)∈J

αc0α
∗
d0

+
∑

(c0,d0)∈J

αd0α
∗
c0

∣∣∣∣∣∣ =∣∣∣∣∣∣
∑

(c0,d0)∈J

2Re(αc0α
∗
d0

)

∣∣∣∣∣∣ ≤
∑

(c0,d0)∈J

2|αc0 ||α∗
d0
| ≤

∑
(c0,d0)∈J

|αc0 |2 + |αd0 |2 ≤ 2
∑

[q]∈G

w[q](|φ〉).

Therefore, ‖|E〉‖2 ≤ 4
∑

[q]∈G w[q](|φ〉). ��

We note that the proof of Theorem 3.3 in [9] states (see first line in the last
paragraph of the proof) that ‖|E〉‖2 = 2

∑
[q]∈G w[q](|φ〉), that is a better char-

acterization than the inequality given by Lemma 4. However, a counterexample
for this equality can be provided under the membership query protocol (which
is the protocol considered in [9]). Interested readers can download such coun-
terexample at http://www.lsi.upc.edu/∼castro/counter.pdf.

Theorem 5. Let |φi〉 be the superposition of LT at time i. Let ε > 0. Let F ⊆
{0, . . . , t−1}×[Q] be a set of time-query class pairs such that

∑
(i,[q])∈F w[q](|φi〉) ≤

ε2

4t . For each i, let T̃i be any answering scheme that agrees with T on any query q

such that (i, [q]) /∈ F . Let |φ̃t〉 be the time t superposition thatLwill get if the answer
to each query instance (i, [q])∈F is modified according to T̃i. Then, ‖|φt〉−|φ̃t〉‖<ε.

4 The Query Complexity of Exact Learners

4.1 The General Halving Dimension

Let C ⊆ Bn be a concept class and let P be a protocol. We associate the
parameter ghdim(V, P) to each subset V of C with |V | > 1. This parameter is
the smallest non-negative integer d satisfying the following predicate: for any
answering scheme T from P there exists a subset S ⊆ T of cardinality d such
that at most half of the functions in V are consistent with all tuples in S. When
there is no integer d satisfying the predicate, ghdim(V, P) is defined to be ∞.

86 J. Castro

Definition 6. The general halving dimension of C under P , GHdim(C,P), is
the maximum of parameters ghdim(V, P). Thus,

GHdim(C,P) = max{ghdim(V, P)
∣∣ V ⊆ C ∧ |V | > 1}.

The general halving dimension has two ancestors. One is the general dimension
concept — which is in turn an extension of the certificate size notion intro-
duced by Hellerstein et al. [15]— that is shown to be a nice characterization of
the query complexity of deterministic learners in the ordinary learning scenario
(see [5]). The other one is the halving complexity notion defined by Simon [19],
that approximates the query complexity of randomized learners in the classical
setting. We prove below several bounds of the query complexity in terms of the
general halving dimension as much for quantum protocols as for classical ones.

4.2 A Lower Bound for the Quantum Query Complexity

Lemma 7. Let us assume GHdim(C,P) > l ≥ 1. There exists a set of concepts
V ⊆ C with |V | > 1 and an answering scheme T such that for any tuple (q, a) ∈
T less than |V |

l concepts from V are not consistent with (q, a).

Proof. For the sake of contradiction suppose that for each subset V of C with
|V | > 1 and for any answering scheme T there exists a tuple (q, a) ∈ T such that
at least |V |

l concepts from V are not consistent with (q, a). Fix V = V0 and let
T be an answering scheme. Thus, it corresponds to V0 a tuple (q0, a0) ∈ T such
that at least |V0|

l concepts from V0 are not consistent with (q0, a0). Let V1 be
the subset of V0 consistent with (q0, a0). By assumption, |V1| ≤ |V |(1− 1/l). We
repeat this process with V1 instead of V0 and so on and so forth. After l iterations
we get a subset Vl of V with |Vl| ≤ |V |/2. This implies that ghdim(V, P) ≤ l. ��

Let l be such that 1 ≤ l < GHdim(C,P) and let V and T be respectively
the subset of C and the answering scheme promised by Lemma 7. Inspired by
Servedio et al. [17], we define the difference matrix M as the |V | × |Q| zero/one
matrix where rows are indexed by concepts in V , columns are indexed by queries
in Q, and Mf,q = 1 iff the Boolean function f is not consistent with the answer
a of q in T . By our choice of V and T , each column of M has less than |V |

l ones.
Thus, the l1 matrix norm of M is ‖M‖1 < |V |

l . The following lemma, which
is a technical generalization of Lemma 6 from [17], shows that no quantum
learning algorithm L with small query complexity can effectively distinguish
many concepts in V .

Lemma 8. Let L be a quantum learner with query complexity m. Let ε > 0.
There are a set W ⊆ V and quantum teachers Tf for concepts f in W such that:

1. |W | > |V |(1− 8m2

lε2)
2. If |φTf 〉 denotes the final superposition of LTf then, for any pair of concepts

f and g of W , it holds ‖|φTf 〉 − |φTg 〉‖ < ε.

How Many Query Superpositions Are Needed to Learn? 87

Proof. Let T be the answering scheme promised by Lemma 7. We define a per-
mutation teacher Tf for each f ∈ V in the following way. Teacher Tf answers
to query q with the answer a such that (q, a) ∈ T whenever f is consistent
with (q, a). Otherwise, any consistent basis answer is chosen in such a way that
equivalent queries have equivalent answers. Note that such permutation teacher
can always be constructed and it defines a valid answering scheme.

Let |φT
i 〉 be the i-th query superposition of LT . Let w(|φT

i 〉) ∈ IR|Q| be the
|Q|-dimensional vector which has entries indexed by queries q ∈ Q and which
has wq(|φT

i 〉) as its q-th entry.
Let wf (|φT

i 〉) be the sum of all query magnitudes wq(|φT
i 〉) where query q is

such that f is not consistent with its corresponding tuple (q, a) ∈ T . Note that
wf (|φT

i 〉) is the magnitude in superposition |φT
i 〉 of those queries where answering

schemes Tf and T are different. Moreover, observe that Mw(|φT
i 〉) ∈ IR|V | is a

|V |-dimensional vector whose f -th entry is precisely wf (|φT
i 〉). Since ‖M‖1 < |V |

l

and ‖w(|φT
i 〉)‖1 ≤ 1 we have that ‖Mw(|φT

i 〉)‖1 < |V |
l , i. e.

∑
f∈V wf (|φT

i 〉) <
|V |
l . Hence

m∑
i=1

∑
f∈V

wf (|φT
i 〉) <

m|V |
l

. (1)

Let us define the subset of concepts W = {f ∈ V
∣∣ ∑m

i=1 wf (|φT
i 〉) ≤ ε2/8m}.

From (1), it follows that |V \W | < 8m2|V |
lε2 . Finally, for any f ∈ W , Theorem 5

implies that ‖|φTf
m 〉 − |φT

m〉‖ < ε/2. ��

Given ε = 1/8, a non-learnability result arises from Lemma 8 whenever |W | > 1.
Thus, it follows

Theorem 9. Let P be a quantum protocol and let C be a target concept class.
The learning query complexity of C under P holds that

QC (C,P) ≥
√

GHdim(C,P)
32

.

We finally note that teachers used in this discussion are permutation teachers.
Thus, for popular protocols as the ones in Sect. 3.1, the statement of Theorem 9 is
also valid even if only involution teachers are considered as valid oracle functions.

4.3 Upper Bounds for the Query Complexity

First in this section we provide an upper bound for deterministic learners under
classical protocols in terms of the general halving dimension. This immediately
yields a trivial upper bound for the quantum query complexity. Afterwards,
we show a quantum algorithm that, under many quantum protocols, achieves
learning improving the trivial upper bound. Lemma 10 and Theorem 11 below
can be easily proved using arguments similar to those in [5, 6]. Here, P denotes
any (classical) protocol.

88 J. Castro

Lemma 10. Let GHdim(C,P) = d. Then, any subset V of C with |V | > 1
accomplish the following predicate. There exists a query q such that for any valid
answer a at least |V |

2d concepts from V are not consistent with (q, a).

From Lemma 10 we get an upper bound for the query complexity.

Theorem 11. There is a deterministic learner for the class C under protocol
P whose query complexity is bounded by �2 ln |C|GHdim(C,P)	.

As any quantum protocol is also a classical one and since reversible Turing
machines can simulate any deterministic algorithm [8], the upper bound in The-
orem 11 also applies to the quantum query complexity.

Let us consider now a quantum protocol P satisfying the following test prop-
erty. Given a tuple (q, a) of P there is a query q′ such that for any valid answer
a′ it is either the case that all functions consistent with (q′, a′) are also consistent
with (q, a) or (q′, a′) does not share any consistent function with (q, a). It is easy
to check that protocols consisting of memberships, restricted equivalences, mem-
berships and equivalences, and memberships and subsets hold the test property.
Other protocols can also satisfy it under some specific settings. For instance,
when the hypothesis class contains all singleton functions the subset protocol
also holds it. On the other hand, the equivalence query protocol is one popular
protocol that does not satisfy the test property.

The test property allows us to evaluate the consistency of the target function
f with respect to a superposition of tuples in P by asking a query superposition.
The following lemma formalizes this fact.

Lemma 12. Let P be a quantum protocol that satisfies the test property. There
is a quantum algorithm that, making a single query superposition, computes the
operator that transforms the superposition of P -tuples

∑
p∈P αp|p〉 into

∑
p∈P

(−1)bpαp|p〉, where bp = 1 when f is not consistent with tuple p and bp = 0
otherwise.

The Grover search [14] is a nice quantum algorithm that performs a search over
a space S using O(

√
|S|) oracle calls. We consider here an extended version of

this algorithm that performs a search for a non-consistent tuple for the target
f with small probability error. Lemma 13 below can be easily shown by using
results in [11] and Lemma 12.

Lemma 13. Let P be as in the previous lemma and let K be a subset of P .
There is a quantum algorithm, denoted by Extended GS, that provided as inputs
set K and a positive integer m, makes at most 17m

√
|K| query superpositions,

and outputs a boolean value success and a tuple k ∈ K satisfying the following
predicate. With error probability bounded by 2−m, success points out if there is a
non-consistent tuple in K for f and tuple k is a non-consistent one when success
is true.

We are ready to show a quantum learning algorithm that achieves learning under
any quantum protocol holding the test property. It is inspired on previous mem-
bership queries quantum learning algorithms by Ambainis et al. [2] and Atici et

How Many Query Superpositions Are Needed to Learn? 89

al. [4]. Its query complexity will improve the trivial upper bound provided by
Theorem 11 whenever GHdim is not very small.

Theorem 14. Let P be a quantum protocol that satisfies the test property. It
holds that QC (C,P) ≤ τ log |C| log log |C|

√
GHdim(C,P), where τ denotes a

constant.

Proof. (sketch) Let d = GHdim(C,P) and let us consider the procedure Qlearner
below. This procedure keeps a set of candidate functions V formed by those
functions from C that have not yet been ruled out. Initially, set V agrees with
C and the algorithm finishes when |V | = 1. We will show that at each iteration
of the while loop at least |V |/2 functions of V are eliminated. Thus, Qlearner
performs at most log |C| iterations before finishing.

procedure Qlearner (P,C)
1: V ← C
2: while |V | �= 1
3: b← Is There a PowerfulQuery?(P, V)
4: if b then
5: Let q be a powerful query.
6: Ask the basis query q and perform an observation

on the teacher answer. Let a be the observation result.
7: W ← {g ∈ V

∣∣ g is not consistent with (q, a)}
//By the choice of q, |W | ≥ |V |/2

8: V ← V \W
9: else
10: Let T be an answering scheme s.t. for all (q, a) ∈ T at least

|V |/2 functions of V are consistent with (q, a).
11: K ← CandidateSetCover(V, T)
12: 〈succes, (q, a)〉 ← Extended GS(K, �log(3 log |C|))
13: if success then
14: W ← {g ∈ V

∣∣ g is consistent with (q, a)}
//By hypothesis on T , |W | ≥ |V |/2

15: V ← V \W
16: else
17: W ← {g ∈ V

∣∣ ∃k ∈ K st g is not consitent with k}
//W is the subset of functions covered by K,
//by construction of K, |W | ≥ |V |/2

18: V ← V \W
19: endif
20: endif
21: endwhile
22: return V

Procedure Qlearner considers two cases in order to shrink set V . The first one
—which corresponds to program lines from 5 to 8— assumes that there is a basis
query q such that for any valid basis answer a at most half of the functions in V

90 J. Castro

are consistent with (q, a). Note that such q is a powerful query because asking q
and making and observation on the teacher answer we can rule out at least half
of the functions in V .

The second case —program lines from 10 to 19— assumes that there is no
powerful query. So, for each query q there is valid answer a such that at least
half of the functions in V are consistent with (q, a). An answering scheme T
formed by this type of elements is considered and a subset K of T that satisfies a
covering property is computed at line 11 by calling procedure CandidateSetCover
below. The covering property we are interested in states that at least half of the
functions in V have some non-consistency witness in K. Here, (q, a) ∈ K is a
non-consistency witness for the function g ∈ V iff g is not consistent with (q, a).

procedure CandidateSetCover(V, T)
U ← V
K ← ∅
while |U | > |V |/2

Let (q, a) ∈ T be such that at least |U|
2d concepts

from U do not satisfy (q, a).
//By Lemma 10 such (q, a) always exists
W ← {g ∈ U

∣∣ g is not consistent with (q, a)}
U ← U \W
K ← K ∪ {(q, a)}

endwhile
return K
//it holds that |K| ≤ 2d

By using Lemma 10, it is straightforward to show that the covering set K re-
turned by CandidateSetCover has cardinality bounded by 2d.

By Lemma 13, the procedure call to Extended GS at line 12 yields, with error
probability bounded by 1

3 log |C| , information about if there is a non-consistency
witness in K for the target and returns a such witness if there is any. Moreover,
this procedure makes at most τ log log |C|

√
d queries, where τ denotes a constant.

Accordingly with the search success, program lines from 13 to 19 removes at least
half of the functions from V .

Summarizing the results from the two cases we have considered, we conclude
that, with error probability 1/3, procedure Qlearner identifies the target concept
after log |C| iterations of the while loop. ��

4.4 The General Halving Dimension and the Query Complexity of
Randomized Learners

We show below that the general halving dimension also provides a lower bound
for the query complexity of randomized learners under classical protocols. The
results in this section are straightforward extensions of results by Simon [19].

Given a classical protocol P and a target concept class C, Simon defines a
halving game between two deterministic players and associates a complexity to

How Many Query Superpositions Are Needed to Learn? 91

each halving game, the halving complexity. It can be easily shown that GHdim
provides a tight characterization of this complexity. Specifically, the halving
complexity is always between the value d of GHdim and 2d. Theorem 3.1 in [19]
shows a lower bound of the query complexity of randomized learners in terms
of the halving complexity. This theorem immediately yields the following lower
bound in terms of the general halving dimension –where the constant is different
from the one in the original version because Simon defines the query complexity
as an expected value–.

Theorem 15. Any randomized learner for the target class C under protocol P
with success probability 2/3 makes at least 1

4GHdim(C,P) queries.

5 Polynomial Learnability

We assume in this section some arbitrary underlying protocol. In order to discuss
the polynomial learnability, we need to extend the concept class notion used until
now. In this section a concept class C will be the union of former concept classes,
i.e. C = ∪nCn where Cn is a subset of Bn. We also need a length notion l defined
on concepts in C. For instance, the length can be the circuit size. In this case,
the length of concept f , denoted by l(f), is the length of the minimum circuit
description for function f . We assume that length notions are so that at most
2s concepts from C have length less than s.

Given a concept class C = ∪nCn and a length notion l, a learner L for C and
l is an algorithm that accomplish the following predicate. For each n and for any
target concept f ∈ Cn, given as inputs s = l(f) and n and provided that a valid
teacher answers the queries according to f , the algorithm L learns f . Moreover,L
is a polynomial query learner when its query complexity — as a function of s and
n— is bounded by a polynomial. A concept class is polynomially query learnable
when it has a polynomial query learner. The following theorem, which states that
any quantum polynomially learnable concept class is also polynomially learnable
in the classical setting, is immediate from Theorems 9 and 11.

Theorem 16. Let C be a concept class and let q(s, n) be its quantum query
complexity function. Then, there exists a deterministic learner for C whose query
complexity function is O(sq2(s, n)).

Under the membership query protocol Servedio and Gortler show a O(nq3(s, n))
upper bound for the query complexity of deterministic learners ([17], Theo-
rem 12). We note that this bound also follows from Theorem 16 and the Ω(s/n)
lower bound for q(s, n) in the membership case provided by Theorem 10 in [17].

Acknowledgments. This work was supported in part by the IST Programme of
the European Community, under the PASCAL Network of Excellence, IST-2002-
506778, and by the spanish MCYT research project TRANGRAM, TIN2004-
07925-C03-02. This publication only reflects the authors’ views.

92 J. Castro

References

[1] A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Syst.
Sci, 64(4):750–767, 2002.

[2] A. Ambainis, K. Iwama, A. Kawachi, H. Masuda, R. H. Putra, and S. Yamashita.
Quantum identification of boolean oracles. In STACS, pages 105–116, 2004.

[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[4] A. Atici and R. A. Servedio. Improved bounds on quantum learning algorithms.

Quantum Information Processing, 4(5):355–386, 2005.
[5] J. L. Balcázar, J. Castro, and D. Guijarro. A general dimension for exact learning.

In Proceedings of the 14th Annual Conference on Computational Learning Theory,
volume 2111 of LNAI, pages 354–367. Springer, 2001.

[6] J. L. Balcázar, J. Castro, and D. Guijarro. A new abstract combinatorial dimen-
sion for exact learning via queries. J. Comput. Syst. Sci., 64(1):2–21, 2002.

[7] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. J. ACM, 48(4):778–797, 2001.

[8] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17:525–532, 1973.

[9] C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani. Strengths and
weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997.

[10] E. Bernstein and U. V. Vazirani. Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, 1997.

[11] M. Boyer, G. Brassard, P. Hyer, and A. Tapp. Tight bounds on quantum search-
ing. Fortschritte der Physik, 46(4-5):493–505, 1998.

[12] N. H. Bshouty and J. C. Jackson. Learning DNF over the uniform distribution
using a quantum example oracle. SIAM Journal on Computing, 28(3):1136–1153,
1999.

[13] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.
Proc Roy Soc Lond A, 439:553–558, 1992.

[14] L. K. Grover. A fast quantum mechanical algorithm for database search. In
STOC, pages 212–219, 1996.

[15] L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many
queries are needed to learn? Journal of the ACM, 43(5):840–862, Sept. 1996.

[16] M. Hunziker, D. A. Meyer, J. Park, J. Pommersheim, and M. Rothstein. The
geometry of quantum learning. arXiv:quant-ph/0309059, 2003. To appear in
Quantum Information Processing.

[17] R. A. Servedio and S. J. Gortler. Equivalences and separations between quantum
and classical learnability. SIAM J. Comput., 33(5):1067–1092, 2004.

[18] D. R. Simon. On the power of quantum computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

[19] H. U. Simon. How many queries are needed to learn one bit of information?
Annals of Mathematics and Artificial Intelligence, 39:333–343, 2003.

Teaching Memoryless Randomized Learners
Without Feedback

Frank J. Balbach1 and Thomas Zeugmann2,�

1 Institut für Theoretische Informatik, Universität zu Lübeck
Ratzeburger Allee 160, 23538 Lübeck, Germany

balbach@tcs.uni-luebeck.de
2 Division of Computer Science

Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan
thomas@ist.hokudai.ac.jp

Abstract. The present paper mainly studies the expected teaching time
of memoryless randomized learners without feedback.

First, a characterization of optimal randomized learners is provided
and, based on it, optimal teaching teaching times for certain classes are
established. Second, the problem of determining the optimal teaching
time is shown to be NP-hard. Third, an algorithm for approximating
the optimal teaching time is given. Finally, two heuristics for teaching
are studied, i.e., cyclic teachers and greedy teachers.

1 Introduction

Teaching studies scenarios in which a teacher gives examples of a target concept
c, chosen from a prespecified concept class C, to a student or a set of students with
the aim that the student or all students, respectively, eventually hypothesize c.
Classically, the admissible students are deterministic learning algorithms and
the teaching performance is measured with respect to the worst case student.

Several models have been proposed to formalize these ideas mathematically.
In the inductive inference framework, Freivalds et al. [8] and Jain et al. [14]
developed a model of learning from good examples. Jackson and Tomkins [13]
as well as Goldman and Mathias [11, 18] defined models of teacher/learner pairs
where teachers and learners are constructed explicitly. In all these models, some
kind of adversary disturbing the teaching process is necessary to avoid collusion
between the teacher and the learner. Angluin and Kriķis’ [1, 2] model prevents
collusion by giving incompatible hypothesis spaces to teacher and learner.

Further approaches differ from the ones mentioned above by not constructing
the learner but assume a learner or a set of learners is given. In Shinohara
and Miyano’s [20] model the students are all consistent deterministic learning
algorithms and the teacher provides a set of examples for the target concept c
such that c is the only concept in the class that is consistent with these examples.
� This work has been supported by the MEXT Grand-in-Aid for Scientific Research

on Priority Areas under Grant No. 18049001.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 93–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 F.J. Balbach and T. Zeugmann

Goldman et al. [12] and Goldman and Kearns [10] also consider a helpful
teacher within the online learning model and investigate how many mistakes a
consistent learner can make in the worst case. This number equals the size of the
smallest sample in Shinohara and Miyano’s [20] model. This number is called
the teaching dimension of the target. Then, the difficulty of teaching a class C
is the maximum of the teaching dimensions taken over all c ∈ C. Because of this
similarity we will from now on refer to both models as the teaching dimension
(TD-)model. The teaching dimension has been studied as a measure for the
difficulty to teach a concept class. However, this measure does not always coincide
with our intuition, since it can be as large as the maximum value possible, i.e.,
equal to size of the set of all examples (see, e.g., [4] for an illustrative example).

So, instead of looking at the worst-case, one has also studied the average
teaching dimension (cf., e.g., [3, 4, 15, 16]). Nevertheless, the resulting model still
does not allow to study interesting aspects of teaching such as teaching learners
with limited memory or to investigate the difference to teach learners providing
and not providing feedback, respectively (cf. [5] for a more detailed discussion).
Therefore, in [5] we have introduced a new model for teaching randomized learn-
ers. This model is based on the TD-model but the set of deterministic learners is
replaced by a single randomized one. The teacher gives in each round an example
of the target concept to the randomized learner that in turn builds hypotheses.
Moreover, the memory of the randomized learner may range from memoryless
(just the example received can be used) to unlimited (all examples received so
far are available). Additionally, the learner may or may not give feedback by
showing its actual guess to the teacher. The teacher’s goal is to make the learner
to hypothesize the target and to maintain it as quickly as possible. Now, the
teaching performance is measured by the expected teaching time (cf. Sect. 2).

In [5] we showed that feedback is provably useful and that varying the learner’s
memory size sensibly influences the expected teaching time. Thus, in this pa-
per we focus our attention to randomized learners without feedback and limited
memory. If there is no feedback, then the teacher can only present an infi-
nite sequence of examples. Teaching infinite sequences introduces difficulties not
present in the variant with feedback. As there are uncountably many teachers,
there is no way to represent them all finitely. Also their teaching time cannot, in
general, be calculated exactly. Finding optimal teachers in the set of all teachers
also seems hard; it is not even clear that always an optimal one exists.

So, for getting started, we analyze the model of memoryless learners without
feedback and ask occasionally which results generalize to any fixed constant
memory size. First, we derive a characterization of optimal learners thereby
showing that there is always an optimal one (Sect. 3). This enables us to calculate
optimal teaching times for certain classes.

We then look at the computational problem of determining the optimal teach-
ing time. No algorithm is known to solve this problem. We show that it is NP-
hard, and there is an (inefficient) algorithm to approximate this value (Sect. 4).
Since optimal teachers are hard to find, we study two heuristics for teaching.
The greedy one is sometimes optimal (checkable via the characterization in

Teaching Memoryless Randomized Learners Without Feedback 95

Sect. 3), but can be arbitrarily far off the optimum (Sect. 5.2). In contrast,
teachers iterating over the same sequence of examples forever can come arbitrar-
ily close to optimal, but it is hard to determine whether they in fact are optimal
(Sect. 5.1).

2 Preliminaries

2.1 Notations

Let X be a finite instance space and X = X × {0, 1} the corresponding set of
examples. A concept class is a set C ⊆ 2X of concepts c ⊆ X . An example (x, v)
is positive if v = 1 and negative if v = 0. We denote the set of all examples for
a concept c by X (c) = {(x, v) v = 1 ⇐⇒ x ∈ c} and the set of all concepts
consistent with an example z by C(z) = {c ∈ C z ∈ X (c)}.

A set Z ⊆ X is a teaching set for a concept c ∈ C with respect to a class C iff c
is the only concept in C consistent with all examples in Z, i.e.,

⋂
z∈Z C(z) = {c}.

For any set S, we denote by S∗ the set of all finite lists of elements from S
and by S� the set of all lists with length . By [a, b] we mean {a, a + 1, . . . , b}.

We denote by Mn the concept class of monomials over X = {0, 1}n, that is
conjunctions of Boolean literals over n variables. We exclude the empty concept
from Mn and can thus identify each monomial with a string from {0, 1, ∗}n

and vice versa. The concept classes Sn over X = [1, n] are defined as Sn =
{[1, n] \ {x} x ∈ [1, n]} ∪ {[1, n]}.

2.2 The Teaching Model

The teaching process is divided into rounds. In each round the teacher gives the
learner an example of a target concept. The learner chooses a new hypothesis
based on this example and on its current hypothesis.

The Learner. As a minimum requirement we demand that the learner’s hypoth-
esis is consistent with the example received in the last round. But the hypothesis
is chosen at random from all consistent ones.

We define the goal of teaching as making the learner hypothesize the target
and maintain it. Consistency alone cannot ensure this, since there may be several
consistent hypotheses at every time and the learner would oscillate between them
rather than maintaining a single one. To avoid this, the learner has to maintain
its hypothesis as long as it is consistent to the new examples (conservativeness).

The following algorithm describes the choice of the next hypothesis by the
memoryless randomized learner in one round of the teaching process.

Input: Current Hypothesis h ∈ C, example z ∈ X .
Output: Next Hypothesis h′ ∈ C.

1. if z /∈ X (h) then pick h′ uniformly at random from C(z);
2. else h′ := h;

96 F.J. Balbach and T. Zeugmann

In the following the term “learner” refers to the memoryless randomized learner.
In order to make our results depend on C alone, rather than on an arbitrary

initial hypothesis from C, we stipulate a special initial hypothesis, denoted init.
We consider every example inconsistent with init and thus init is automatically
left after the first example and never reached again.

The definition of the learner contains implicitly a function p : (C ∪ {init}) ×
X × (C ∪{init})→ [0, 1] with p(h, z, h′) specifying the probability of a transition
from hypothesis h to h′ when receiving example z.

The Teacher. A teacher is an algorithm that is given a target concept c∗ in
the beginning and then outputs an example for c∗ in each round. A teacher for
c∗ can thus be regarded as a function T : → X (c∗).

Definition 1. Let C be a concept class and c∗ ∈ C. Let T : → X (c∗) be a
teacher and (ht)t∈ be the series of random variables for the learner’s hypothesis
at round t. The event “teaching success in round t,” denoted by Gt, is defined as

ht−1 �= c∗ ∧ ∀t′ ≥ t : ht′ = c∗ .

The success probability of T is Pr
[⋃

t≥1 Gt

]
. A teacher is successful iff the

success probability is 1. For such a teacher we therefore define the teaching time
as ET (c∗, C) :=

∑
t≥1 t · Pr[Gt]. Then the teaching time for the concept c∗ is

E(c∗, C) := inf
T

ET (c∗, C) .

Although the teacher cannot observe the hypotheses, it can at least calculate
the probability distribution δ : C ∪ {init} → [0, 1] over all possible hypotheses.
Such a δ contains all knowledge of the teacher about the situation. The proba-
bility of being in c∗, however, is irrelevant for the teacher’s decision. Only the
relations of the probabilities for non-target states are important. Normalizing
these probabilities yields a probability distribution γ : C ∪ {init} \ {c∗} → [0, 1]
over Ĉ := C ∪ {init} \ {c∗}. Following Patek [19] we call γ an information state.
We denote by γ(0) the initial information state, that is γ(0)(init) = 1.

The definition of the learner defines implicitly a state transition function
f : Γ × X → Γ , that is f(γ, z) is the follow-up information state after teach-
ing example z to a learner in state γ.

It is possible to describe teachers as functions T̃ : Γ → X (c∗) where Γ is the
set of all information states. Such a teacher T̃ , when applied to the initial state
γ(0) and subsequently to all emerging states, yields a teacher T : → X (c∗).

Remark. If we assume that the learner’s hypothesis is observable as feedback
then teachers become functions T : C ∪ {init} → X (c∗). In this model variant
with feedback, teachers are finite objects (see Balbach and Zeugmann [5]).

Our teaching model without (with) feedback is a special case of an unobserv-
able (observable) stochastic shortest path problem, (U)SSPP. Stochastic shortest
path problems are more general in that they allow arbitrary transition proba-
bilities and arbitrary costs assigned to each transition. In our teaching models,
the transition probabilities are restricted to p and each example has unit cost.
For more details on SSPPs see e.g., Bertsekas [6].

Teaching Memoryless Randomized Learners Without Feedback 97

3 Existence of Optimal Teachers

The most interesting property of a target concept in our model is its optimal
teaching time E(c∗, C). One way to calculate E(c∗, C) is to calculate ET (c∗, C)
for an optimal teacher T . However, as there are uncountably many teachers,
it is not even clear whether an optimal teacher exists at all. In this section
we derive a characterization of optimal teachers which shows that there is al-
ways one. Moreover, it allows us to check whether a given teacher is
optimal.

Our result is based on a characterization of optimal “policies” in USSPPs pre-
sented by Patek [19] that is applicable to USSPPs satisfying certain assumptions.
As our teaching model is a special case of USSPPs, where “policies” correspond
to teachers, we have to show that these assumptions hold in our teaching model.

To state Patek’s [19] characterization and the assumptions under which it
works, it is inevitable to introduce some further technical notation. Moreover,
the optimality criterion is based on information state teachers T̃ : Γ → X (c∗)
rather than sequential teachers T : → X (c∗).

Following Patek [19], we consider series (T̃t)t∈ of teachers. Such a series is
called stationary if all teachers in it are identical. For such a series (T̃t)t∈ , we
denote by Prm(γ, T̃) the probability that a learner reaches c∗ within m rounds
when it is started in γ ∈ Γ and is taught by teacher T̃t in round t = 0, 1,

We also need two so called dynamic programming operators D and DT̃ map-
ping functions G : Γ → to functions of the same type:

[DT̃G](γ) = 1 + G(f(γ, T̃ (γ))) ·
∑

c,d∈Ĉ

γ(c) · p(c, T̃ (γ), d) ,

[DG](γ) = min
z∈X (c∗)

(
1 + G(f(γ, z)) ·

∑
c,d∈Ĉ

γ(c) · p(c, z, d)
)
.

The sum
∑

c,d∈Ĉ γ(c) · p(c, T̃ (γ), d) yields the probability for not reaching c∗ in
the next round after being taught T̃ (γ) in state γ. To get an intuition about
above formulas, it is helpful to think of a value G(γ) as the expected num-
ber of rounds to reach the target when the learner starts in state γ. Then
[DT̃G](γ) specifies for every initial state γ the expected number of rounds un-
der teacher T̃ , assuming that for all other states the expectations are given
by G.

Given a teacher series (T̃t)t∈ , the expected time to reach the target when
starting in γ ∈ Γ is denoted by GT̃ (γ). This yields a function GT̃ : Γ → .

The characterization, in terms of the randomized teaching model, now is:

Theorem 2 ([19]). Let C be a concept class and c∗ ∈ C a target. Assume that

(a) There is a stationary series (T̃t)t∈ with lim
m→∞

Pr m(γ, T̃) = 1 for all γ ∈ Γ .

(b) For every series (T̃t)t∈ not satisfying (a), a subsequence of(
[DT̃0

DT̃1
· · ·DT̃t

0](γ)
)∞
t=0

tends to infinity for some γ ∈ Γ .

98 F.J. Balbach and T. Zeugmann

Then

1. The operator D has a fixed point G, that is DG = G.
2. A teacher T̃ : Γ → X (c∗) is optimal (i.e., has minimal teaching time) iff

there is a G : Γ → such that DG = G and DT̃G = G.

Roughly speaking, Theorem 2 says: If (a) there is a teacher successful from every
initial state and if (b) every non-successful teacher has an infinite teaching time
from at least one initial state, then there is an optimal teacher and its teaching
time G is just the fixed point of the operator D.

We now show that conditions (a) and (b) hold for all classes and targets in
our model. For condition (a) we show that a greedy teacher is always successful.

Definition 3. A teacher T̃ for c∗ ∈ C is called greedy iff for all γ ∈ Γ

T̃ (γ) ∈ argmax
z∈X (c∗)

∑
c∈Ĉ

γ(c) · p(c, z, c∗) .

Note that replacing γ with δ and Ĉ with C∪{init} yields an equivalent definition.

Lemma 4. Let C be a concept class and c∗ ∈ C. Let T be the sequential teacher
for some greedy teacher T̃ . Then T is successful for c∗.

Proof. We denote by δt : C ∪ {init} → [0, 1] the probabilities of the hypotheses
in round t under teacher T . In each round t, T picks an example z maximizing∑

c∈C∪{init} δt(c) · p(c, z, c∗). We lower bound this value.
There is a concept c′ �= c∗ with δt(c′) ≥ (1− δt(c∗))/|C|. Let z′ be an example

inconsistent with c′. Then p(c′, z, c∗) ≥ 1/|C| and therefore
∑

c δt(c)·p(c, z′, c∗) ≥
(1 − δt(c∗))/|C|2. As T maximizes this sum, we have also for z = T (t) that∑

c δt(c) · p(c, z, c∗) ≥ (1 − δt(c∗))/|C|2. This sum also equals δt+1(c∗) − δt(c∗)
and therefore

1− δt+1(c∗) ≤ (1 − 1/|C|2) · (1− δt(c∗)) .

Hence, 1− δt(c∗) → 0 as t→∞ and the probability δt(c∗) tends to one. ��
We only sketch the technical proof that condition (b) is satisfied too.

Lemma 5. Let C be a concept class and c∗ ∈ C a target. Then (b) holds.

Proof. (Sketch) Let (T̃t)t∈ be a series that does not satisfy condition (a). Then
there is a γ with limm→∞ Pr m(γ, T̃) < 1. This means limm→∞ δm(c∗) < 1, where
(δt)t∈ is the series resulting from application of T̃ to γ. The expected number of
rounds to reach c∗ is infinite in this case. Patek [19] shows that this expectation
is also lim inf

t→∞
[DT̃0

· · ·DT̃t
0](γ), where 0 : Γ → is the zero function.

Hence the sequence ([DT̃0
DT̃1

· · ·DT̃t
0](γ))∞t=0 tends to infinity. ��

Theorem 2 requires us to find a G : Γ → and to define a teacher T̃ : Γ → X (c∗).
However, most of the states in Γ cannot be reached from the initial state γ(0)

and it seems unnecessary to specify T̃ ’s behavior for the unreachable states too.
As a matter of fact, it suffices to define G and T̃ for the reachable states in Γ
denoted by Γ0 = {γ ∈ Γ ∃t ∃z0, . . . , zt : γ = f(. . . f(f(γ(0), z0), z1) . . . , zt)}. We
omit the proof thereof and state the final version of the characterization.

Teaching Memoryless Randomized Learners Without Feedback 99

Corollary 6. Let C be a concept class and c∗ ∈ C a target. A teacher T̃ : Γ0 →
X (c∗) is optimal iff there is a G : Γ0 → such that DG = G and DT̃G = G,
where D and DT̃ have to be restricted suitably to work on functions G : Γ0 → .

One advantage of using Γ0 instead of Γ is that we have to consider only one
state with γ(init) > 0, namely the initial state γ(0). For illustration, we apply
Corollary 6 to the class Sn in order to find an optimal teacher for [1, n].

Fact 7. Let c∗ = [1, n] ∈ Sn. Then the teacher T : → X (c∗) with T (i) =
(1+(i mod n), 1) is an optimal teacher for c∗ with teaching time n(n−1)/2+1.

Proof. The proof proceeds in several steps. First we define a teacher T̃ : Γ0 →
X (c∗) and a function G : Γ0 → . Then we show that DG = G and DT̃ = D

from which we conclude that T̃ is optimal. Finally we show that T̃ , when applied
to γ(0), generates the same example sequence as T .

For a γ ∈ Γ and i ∈ [1, n] we set as shortcut γi := γ(c) for c = [1, n] \ {i}. A
positive example (x, 1) is inconsistent only with the concept [1, n]\{x}. Teaching
(x, 1) in a state γ �= γ(0) results in a state f(γ, (x, 1)) = γ̂ with γ̂i = γi+γx/n

1−γx/n for
i �= x, and γ̂x = 0. For γ = γ(0) we have γ̂i = 1/(n− 1) for all i �= x and γ̂x = 0.

We define T̃ to be a greedy teacher. If there are several equally “greedy” ex-
amples, T̃ picks the one with smallest instance. As every example is inconsistent
with exactly one concept, T̃ greedily picks an example that is inconsistent with
a most probable hypothesis.

For defining G, let γ ∈ Γ0 \ {γ(0)} and assume without loss of generality
γ1 ≥ γ2 ≥ · · · ≥ γn. Let F = (n−1)n

2 . Then we define

G(γ) := F +
∑n

i=1
γi · i and G(γ(0)) := F + 1 .

Next we show DG = G. Let γ ∈ Γ0\{γ(0)} and recall that γ1 ≥ · · · ≥ γn. We have
to show that [DG](γ) = G(γ), in other words that 1+min(x,1)∈X G(f(γ, (x, 1))) ·∑

c,d∈Ĉ p(c, (x, 1), d) = G(γ). Since
∑

c,d p(c, (x, 1), d) = 1− γx/n this means

1 + min
(x,1)∈X

G(f(γ, (x, 1))) · (1− γx/n) = G(γ) . (1)

Let z = (x, 1) ∈ X and γ̂ = f(γ, z). Then γ̂1 ≥ · · · ≥ γ̂z−1 ≥ γ̂z+1 ≥ · · · ≥ γ̂n ≥
γ̂z = 0. The expression to be minimized is(

1− γx

n

)
·G(γ̂) =

(
1− γx

n

)
·
(
F +

∑
i≤x−1

iγ̂i +
∑

i≥x+1

(i− 1)γ̂i

)

=
(
1− γx

n

)
·
(
F +

∑
i≤x−1

i · γi+γx/n
1−γx/n +

∑
i≥x+1

(i− 1)γi+γx/n
1−γx/n

)

= F +
n∑

i=1

iγi −
(
x · γx +

∑
i≥x+1

γi

)
. (∗)

100 F.J. Balbach and T. Zeugmann

From γ1 ≥ · · · ≥ γn, it follows 1γ1 +
∑

i≥2 γi ≥ 2γ2 +
∑

i≥3 γi ≥ · · · ≥ nγn. This
means that the expression (∗) is minimal for x = 1, or γx = γ1. Setting x = 1
yields min(x,1) G(f(γ, (x, 1))) · (1 − γx/n) = F − 1 +

∑n
i=1 iγi = G(γ) − 1 and

thus Equation (1) is satisfied.
It remains to show [DG](γ(0)) = G(γ(0)). For all examples (x, 1) ∈ X we have

[DG](γ(0)) = 1 + (1− 1
n)G(f(γ(0), (x, 1))) = 1 + (1− 1

n) ·
(
F +

∑n−1
i=1 i 1/n

1−1/n

)
=

1 + n−1
n ·

(
F + 1

n−1 ·
n(n−1)

2

)
= 1 + n(n−1)

2 = F + 1 = G(γ(0)).

It follows that [DG](γ) = G(γ) for all γ ∈ Γ0. Moreover, teacher T̃ always
picks the example (x, 1) minimizing the term in Equation (1), thus DT̃G = G

and T̃ is optimal according to Corollary 6.
The teacher T̃ , when started in γ(0), generates the same sequence of examples

as T . By the definition of T̃ , T̃ (γ(0)) = (1, 1) and for γ �= γ(0) with γ1 ≥ · · · ≥ γn

(w. l. o. g.) T̃ chooses example (1, 1) and the next information state is γ̂ with
γ̂2 ≥ · · · ≥ γ̂n ≥ γ̂1 = 0. Therefore, T̃ chooses (2, 1) next and so on. ��

With feedback [1, n] ∈ Sn can be taught in expected n rounds: A teacher T
observing the learner’s hypothesis can always choose an inconsistent example.
Under T , the learner has in each round a probability of 1/n of reaching the target.
But teaching [1, n] ∈ Sn without feedback requires Ω(n2) rounds (cf. Fact 7).

As the previous fact also shows, to prove the optimality of a sequential teacher,
we have to take a detour via information state teachers. Thus finding the “right”
information state teacher is the crucial step in applying Corollary 6.

4 Finding Optimal Teachers

Now that we know that there is always an optimal teacher, we ask how to find one
effectively. But as these teachers are infinite sequences of examples, it is unclear
how an “optimal teacher finding”-algorithm should output one. Alternatively,
we could seek a generic optimal teacher, that is an algorithm receiving a class, a
target c∗, and a finite example sequence, and outputting an example such that
its repeated application yields an optimal teacher for c∗.

A closely related task is to determine the teaching time of an optimal teacher,
that is E(c∗, C).

Definition 8. We call the following problem OPT-TEACHING-TIME.
Input: Concept class C, concept c∗ ∈ C, rational number F .
Question: Is E(c∗, C) ≤ F?

In the more general setting of USSPPs the analog problem is undecidable (see
Madani et al. [17] and Blondel and Canterini [7]). This can be seen as evidence
for the undecidability of OPT-TEACHING-TIME. On the other hand, USSPPs differ
from our model in some complexity aspects. For example, deciding whether there
is a teacher with at least a given success probability is easy (because there is
always one), whereas the analog problem for USSPPs is undecidable [17, 7].

Teaching Memoryless Randomized Learners Without Feedback 101

B = {1, 2, 3, 4, 5, 6},
A1 = {2, 4, 5},
A2 = {1, 3, 5},
A3 = {1, 3, 6}

−→

x1 x2 x3 y1 y2 y3 y4 y5 y6

c∗ 1 1 1 1 1 1 1 1 1
c1 1 0 0 0 1 1 1 1 1
c2 0 1 1 1 0 1 1 1 1
c3 1 0 0 1 1 0 1 1 1
c4 0 1 1 1 1 1 0 1 1
c5 0 0 1 1 1 1 1 0 1
c6 1 1 0 1 1 1 1 1 0

Fig. 1. Illustration of the reduction from X3C to OPT-TEACHING-TIME. Every example on
the left is inconsistent with exactly three concepts; y1, . . . , y6 are “dummy” instances
making all concepts unique. The examples (x1, 1), (x3, 1) have the X3C property.

Although the decidability of OPT-TEACHING-TIME is open, we can at least
show it is NP-hard. So even if there is an algorithm, it is presumably inefficient.

The proof is by reduction from the EXACT-3-COVER (X3C) problem [9]. The
following algorithm computes OPT-TEACHING-TIME instances from X3C instances
in polynomial time (see Fig.1 for an example).

Input: Set B = [1, 3n] (n ∈), sets A1, . . . , Am ⊆ B with |Ai| = 3.
1. X := {x1, . . . , xm} ∪ {y1, . . . , y3n}
2. cj := {xi j /∈ Ai} ∪ {yi i �= j} for j = 1, . . . , 3n
3. c∗ := X
4. C := {c∗, c1, . . . , c3n}
5. Output 〈C, c∗, 1 + 3

2n(n− 1)〉

We call a concept class C output by this algorithm a positive or negative X3C
class depending on whether the input was a positive or negative X3C instance.

An X3C class is positive iff there are examples z1, . . . , zn ∈ X (c∗) such that
the sets C\C(zj) are pairwise disjoint for j = 1, . . . , n and

⋃
j(C\C(zj)) = C\{c∗}.

Examples z1, . . . , zn satisfying the property just stated have the X3C property.
If A1, . . . , Am consists of all m =

(3n
3

)
subsets of B we call the class a full

X3C class. Every full X3C class is a positive X3C class.

Of all X3C classes, the full X3C classes are easiest to analyze because of
their intrinsic symmetries. Moreover, the optimal teachers are just the greedy
teachers, which simplifies the application of our optimality criterion. Note that
for arbitrary X3C classes a greedy teacher need not to be optimal.

Lemma 9. Let n ≥ 2, let C be a full X3C class for n and c∗ be the concept
containing all instances. Then a teacher T̃ : Γ0 → X (c∗) is optimal if and only
if T̃ is greedy. The teaching time, when starting in γ(0), is 1 + 3

2n(n− 1).

Proof. (sketch) The class C is similar to the class S only with three zeros per
column instead of one. Consequently the proof that all greedy teachers are opti-
mal is similar to that of Fact 7. That the “dummy” examples are never chosen
by an optimal teacher and that all optimal teachers are greedy can be proved
by straightforward but technically involved application of Corollary 6. ��

102 F.J. Balbach and T. Zeugmann

The next lemma describes the optimal teachers as example sequences rather
than in terms of the information states.

Lemma 10. Let n ≥ 2, let C be a full X3C class for n and c∗ be the concept
containing all instances. A teacher T : → X (c∗) is optimal if and only if
T (t) = zt mod n for all t with the examples z0, . . . , zn−1 having the X3C property.

Proof. This proof is similar to the last paragraph of the proof of Fact 7. We omit
the technical details. ��

So far, we have characterized the optimal teachers for full X3C classes.

Lemma 11. Let C be an X3C class. Then E(c∗, C) = 1 + 3
2n(n− 1) if and only

if C is a positive X3C class.

Proof. For the if-direction, let z1, . . . , zn ∈ X (c∗) have the X3C property.
The teacher T defined by T (t) = zt mod n has a teaching time of 1+ 3

2n(n−1).
This follows similar to Lemma 10. If there was a better teacher, this teacher
would also have a smaller teaching time when applied to the full X3C class, thus
contradicting Lemma 10.

For the only-if direction, assume E(c∗, C) = 1 + 3
2n(n− 1) and suppose that

C is a negative X3C class. Then there is a teacher T for c∗ with teaching time
1 + 3

2n(n− 1), but not iterating over a sequence of examples z1, . . . , zn ∈ X (c∗)
with the X3C property (because negative X3C classes have no such examples).
The teacher T would then have the same teaching time with respect to a full
X3C class, too. Hence, T would be an optimal teacher for the full X3C class, a
contradiction to Lemma 10. ��

Using Lemma 11 we can show our main result.

Theorem 12. The problem OPT-TEACHING-TIME is NP-hard.

Proof. Let 〈B,A1, . . . , Am〉 with B = [1, 3n] be an instance of X3C and let
〈C, c∗, 1 + 3

2n(n− 1)〉 be the instance of OPT-TEACHING-TIME resulting from the
polynomial time reduction on Page 101.

By definition 〈B,A1, . . . , Am〉 is a positive instance of X3C iff C is a positive
X3C class. The latter holds iff E(c∗, C) = 1 + 3

2n(n− 1) (by Lemma 11). This in
turn holds iff 〈C, c∗, 1+ 3

2n(n−1)〉 is a positive OPT-TEACHING-TIME instance. ��

The last theorem implies that no polynomial time generic optimal teacher exists
(unless P = NP).

In our teaching model it is at least possible to effectively approximate E with
arbitrary precision.

Fact 13. There is an algorithm with:
Input: Concept class C, concept c ∈ C, precision ε > 0.
Output: F ∈ with |F − E(c, C)| < ε.

Teaching Memoryless Randomized Learners Without Feedback 103

Input: Concept class C, concept c ∈ C, rational number ε > 0.

1. D := |X| · |C|
2. for � = 1, 2, . . . :
3. for all α ∈ X (c)�:

// denote with hi (i = 1, . . . , �) the random variable for the
// hypothesis the teacher after round i when taught α.

4. b(α) :=
∑�

i=1 i · Pr[hi = c ∧ hi−1 �= c] + (� + 1) · Pr[h� �= c]
5. B(α) :=

∑�
i=1 i · Pr[hi = c ∧ hi−1 �= c] + (� + D) · Pr[h� �= c]

6. b� := min{b(α) α ∈ X (c)�}
7. if ∃α ∈ X (c)� : B(α) − b� < ε:
8. Output B(α).

Fig. 2. Algorithm computing an approximation of E(c∗, C)

Proof. Roughly speaking, the probability for not being in the target state tends
to zero as the sequence of examples given by the teacher grows. The idea of
the algorithm in Fig. 2 is to approximate the expectations for growing finite
sequences of examples until the probability of not being in the target state
becomes negligibly small.

The values Pr[hi = c∧hi−1 �= c] can be calculated according to the state tran-
sition function f . Its values are always rational numbers which can be calculated
and stored exactly. The value D is an upper bound for the expected number of
rounds to reach c regardless of the initial state of the learner. That means that
in every state of the learner teaching can be continued such that the target is
reached in expected at most D rounds.

The values b(α) and B(α) are a lower and an upper bound for the teaching
time of a teacher starting with example sequence α. To verify this note that∑�

i=1 i · Pr[hi = c ∧ hi−1 �= c] is the expectation considering the first rounds
only. The remaining probability mass Pr[h� �= c] needs at least 1 and at most
D additional rounds, which yields b(α) and B(α), respectively.

It follows that B(α) ≥ E(c, C) for all α ∈ X (c)∗. Moreover, since every teacher
starts with some example series α ∈ X (c)�, the values b� are all lower bounds
for E(c, C), that is b� ≤ E(c, C) for all ≥ 1. Therefore the output B(α) with
B(α)− b� < ε is an ε-approximation for E(c, C).

It remains to show the termination of the algorithm. To this end we show:

Claim. lim�→∞ b� = E(c, C).
Proof. Let δ > 0 and set 0 := (D · E(c, C))/δ. We show that for all ≥ 0,
|E(c, C)− b�| < δ. Let ≥ 0. Then ≥ (D ·E(c, C))/δ.

Let α ∈ X (c)� such that b(α) = b�. Then b(α) ≤ E(c, C) and therefore (+
1) · Pr[h� �= c] ≤ E(c, C). It follows Pr[h� �= c] ≤ E(c, C)/(+ 1).

For B(α) we have

B(α) = b(α) + Pr[h� �= c] · (D − 1) ≤ b(α) + E(c,C)
�+1 · (D− 1) < b(α) + E(c,C)

� ·D.

Using 1/ ≤ δ/(D ·E(c, C)), we get B(α) < b(α) + δ.

104 F.J. Balbach and T. Zeugmann

On the other hand, E(c, C) ≤ B(α) and therefore E(c, C) < b(α) + δ, hence
E(c, C)− b� = E(c, C)− b(α) < δ. � Claim
To prove the termination of the algorithm we have to show that there is an α
such that B(α) − b� < ε. Let T : → X (c) be an optimal teacher and denote
〈T (0), . . . , T (− 1)〉 ∈ X (c)� by T0:�. Then lim�→∞B(T0:�) = E(c, C). Together
with lim�→∞ b� = E(c, C) it follows lim�→∞(B(T0:�) − b�) = 0. That means for
sufficiently long α = T0:�, the condition B(T0:�)− b� < ε is satisfied. ��

5 Heuristics for Teaching

As it seems difficult to find an optimal teacher, next we study teaching heuristics.

5.1 Cyclic Teachers

Probably the simplest teachers are those that give the same sequence of exam-
ples over and over again. Such a cyclic teacher is identified with the sequence
(z0, . . . , zm−1) ∈ Xm of examples it teaches.

Fact 14. Let C be a concept class and c∗ ∈ C a target concept. A cyclic teacher
(z0, . . . , zm−1) is successful iff {z0, . . . , zm−1} is a teaching set for c∗ wrt. C.

Not only is success of a cyclic teacher easy to decide, the teaching time is also
efficiently computable.

Lemma 15. The teaching time of a cyclic teacher can be computed from the
sequence of examples that the teacher repeats.

Proof. Let C be a concept class and let c∗ ∈ C. Let T be a cyclic teacher repeating
z0, . . . , zm−1. We assume that the examples constitute a teaching set.

Teaching will be successful no matter at which of the examples zi the loop
starts. We denote by Fi (0 ≤ i < m) the teaching time for the teacher Ti : T (t) =
z(i+t) mod m starting with example zi. For h ∈ C we denote by Fi(h) the teaching
time for teacher Ti when the learner’s initial hypothesis is h. For convenience
throughout this proof all subscripts of T, z, and F are to be taken modulo m.

We can now state a linear equation for Fi involving all Fj with j �= i. Consider
the teacher Ti and the learner’s state δ after the first example, zi, has been given.
The learner assumes all hypotheses h ∈ C(zi) with equal probability δ(h) =
1/|C(zi)| and all other hypotheses with probability δ(h) = 0.

The expectation Fi is one plus the expectation for teacher Ti+1 when the
learner starts in state δ. This expectation equals the weighted sum of the expec-
tations of teacher Ti+1 starting in state h, that is

Fi = 1 +
∑

h∈C\{c∗}
δ(h) · Fi+1(h) .

We now determine Fi+1(h). Consider a learner in state h �= c∗ and a teacher
giving zi+1, zi+2, The learner will change its state only when the first example

Teaching Memoryless Randomized Learners Without Feedback 105

inconsistent with h arrives (such an example exists since the zi’s form a teaching
set for c∗). Let zi+k be this example. Beginning with zi+k, teaching proceeds as if
teacher Ti+k had started from the init state. Therefore Fi+1(h) = (k−1)+Fi+k.

If we denote for i = 0, . . . ,m− 1 and for k = 1, . . . ,m,

Ci,k = {h ∈ C \ {c∗} h ∈ C(zi), h /∈ C(zi+1), . . . , h /∈ C(zi+k−1), h ∈ C(zi+k)},

then we get the following linear equation for Fi:

Fi = 1 +
m∑

k=1

|Ci,k|
|C(zi)|

· ((k − 1) + Fi+k) .

In this manner we get m linear equations in the variables F0, . . . , Fm−1. De-
noting the solution vector by F we get a linear equation system of the form
(1−C) ·F = U , where 1 is the m×m unit matrix, C is a substochastic matrix
composed of entries of the form |Ci,k|/|C(zi)| and zeros. Thus 1−C is invertible
and the values F0, . . . , Fm−1 are uniquely determined by the equation system.
F0 is the sought teaching time. ��

The algorithm in Fig. 2 computes an α ∈ X ∗ such that every extension of α yields
a teacher ε-close to optimal. In particular, this holds for the cyclic teacher α.
Hence, cyclic teachers can be arbitrarily close to the optimal teacher.

A drawback of cyclic teachers T is that they do not directly yield an infor-
mation state teacher T̃ . Thus the optimality criterion cannot immediately be
applied. But cyclic teachers can be used to calculate upper bounds on E(c∗, C).

Fact 16. Let k ≥ 3, n ≥ k. The monomial 1k∗n−k has a teaching time of at
most −2+2k+1+7·2n−2n+k+2+22+k·3n+2n+2·3n−2·3n+1−4n+1−2(2k−2n+1+2·3n)k

2·3n−2n+1+2k .

Proof. This teaching time is achieved by the following cyclic teacher T . The
teacher provides alternately positive and negative examples. The positive exam-
ples alternate between the two complementary examples 1k0n−k and 1k1n−k.

The first k characters of the negative examples iterate through 01k−1, 101k−2,
. . . ,1k−10, the last n− k characters equal the last n− k characters of the imme-
diately preceding positive example. For example, let k = 3 and n = 5. Then
the example sequence is (11100, 1), (01100, 0), (11111, 1), (10111, 0), (11100, 1),
(11000, 0), (11111, 1), (01111, 0), (11100, 1), (10100, 0), (11111, 1), (11011, 0).

Applying the method of the proof of Lemma 15, the expected teaching time
of this teacher can be calculated. We omit the details. ��

For comparison, the optimal teaching time for monomials in the scenario with
feedback is (3n−2n)(2n+2k)−2n+k−1+2n+1−3n

3n−2n+2k−1 (see [5]). A tedious analysis would
show that the value given in Fact 16 is at most twice as high. Thus, teaching
monomials without feedback takes at most twice as long as with feedback.

Corollary 17. The following problem OPT-CYCLIC-TEACHING-TIME is NP-hard.
Input: Concept class C, concept c∗ ∈ C, rational number F .
Question: Is there a cyclic teacher with teaching time at most F?

106 F.J. Balbach and T. Zeugmann

5.2 Greedy Teachers

We know from Lemma 4 that a greedy teacher is always successful. Moreover,
in contrast to cyclic teachers, they allow a direct application of the optimality
criterion. Thus we were able to prove their optimality in Fact 7. However, they
can be arbitrarily far off the optimal teacher.

Fact 18. For every d > 1 there is a class C and a target c∗ such that for all
greedy teachers T , ET (c∗, C) > d ·E(c∗, C).

x1 x2 x3 y1 yn

c∗ 1 1 1 1 1
c1 0 1 1 1 1
c2 1 0 1 1 1
c3 1 1 0 1 1
c4 0 0 1 0 1 . . . 1 1

...
...

... 1 0 1 . . . 1
...

...
...

... 1
. . .

...
...

...
...

...
...

. . . 1
c3+n 0 0 1 1 1 . . . 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
n

Fig. 3. For growing n, the greedy teacher for c∗ becomes arbitrarily worse than the
optimal teacher. See Fact 18. The examples on the right are “dummy” examples.

Proof. Figure 3 shows a family of classes parameterized by n. We sketch the
main steps of the proof.

(1) The cyclic teacher ((x1, 1), (x2, 1), (x3, 1)) has a teaching time of (16 +
5n)/(4 + n) < 5. Therefore E(c∗, C) < 5. This can be shown using Lemma 15.

(2) Setting n := 3
2 (32�−1−3)+1 makes the greedy teacher be a cyclic teacher of

the form (((x1, 1), (x2, 1))�, (x3, 1)) or (((x2, 1), (x1, 1))�, (x3, 1)) giving times
x1, x2 before giving x3. The value becomes larger with growing n because,
intuitively, the example x3 becomes less attractive for the greedy teacher.

(3) For given the cyclic teacher has −n+9�(16+5n)+4�(1+32�+1+9�n)
2(−1+9�)(4+n) as teaching

time. The proof is again an application of Lemma 15.

(4) For n as in (2) the greedy learner is cyclic with = log(7 + 2n)/ log(9)
and according to (3) with a teaching time of

(56 + n(33 + 5n)) log(3) + (22 + n(13 + 2n)) log(7 + 2n)
(3 + n)(4 + n) log(9)

which is not bounded from above and can be larger than 5 by any factor d. ��

In general there can be more than one greedy teacher for a given class and
concept. It is NP-hard to compute the teaching time of the optimal one.

Teaching Memoryless Randomized Learners Without Feedback 107

Corollary 19. The following problem OPT-GREEDY-TEACHING-TIME is NP-hard.
Input: Concept class C, concept c∗ ∈ C, rational number F .
Question: Is there a greedy teacher with teaching time at most F?

Conclusion. We presented a model for teaching randomized memoryless learn-
ers without feedback, characterized optimal learners, and analyzed the expected
teaching time of certain classes. We showed the problem of determining the
optimal teaching time to be NP-hard and studied useful heuristics for teaching.

Acknowledgment. The authors are very grateful to the ALT 2006 PC members
for their many valuable comments.

References

[1] D. Angluin and M. Kriķis. Teachers, learners and black boxes. In Proc. 10th Ann.
Conf. on Comput. Learning Theory, pp. 285–297. ACM Press, New York, 1997.

[2] D. Angluin and M. Kriķis. Learning from different teachers. Machine Learning,
51(2):137–163, 2003.

[3] M. Anthony, G. Brightwell, D. Cohen, and J. Shawe-Taylor. On exact specification
by examples. In Proc. 5th Ann. ACM Works. on Comput. Learning Theory, pp.
311–318. ACM Press, New York, NY, 1992.

[4] F. J. Balbach. Teaching Classes with High Teaching Dimension Using Few Ex-
amples. In Learning Theory, 18th Ann. Conf. on Learning Theory, COLT 2005,
Bertinoro, Italy, June 2005, Proc., LNAI 3559, pp. 668–683, Springer, 2005.

[5] F. J. Balbach and T. Zeugmann. Teaching randomized learners. In Learning
Theory, 19th Ann. Conf. on Learning Theory, COLT 2006, Pittsburgh, PA, USA,
June 2006, Proc., LNAI 4005, pp. 229–243, Springer, 2006.

[6] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci., 2005.
[7] V. D. Blondel and V. Canterini. Undecidable problems for probabilistic automata

of fixed dimension. Theory of Computing Systems, 36(3):231–245, 2003.
[8] R. Freivalds, E. B. Kinber, and R. Wiehagen. On the power of inductive inference

from good examples. Theoret. Comput. Sci., 110(1):131–144, 1993.
[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.
[10] S. A. Goldman and M. J. Kearns. On the complexity of teaching. J. of Comput.

Syst. Sci., 50(1):20–31, 1995.
[11] S. A. Goldman and H. D. Mathias. Teaching a smarter learner. J. of Comput.

Syst. Sci., 52(2):255–267, 1996.
[12] S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and

total orders. SIAM J. Comput., 22(5):1006–1034, 1993.
[13] J. Jackson and A. Tomkins. A computational model of teaching. In Proc. 5th

Ann. ACM Works. on Comput. Learning Theory, pp. 319–326. ACM Press, 1992.
[14] S. Jain, S. Lange, and J. Nessel. On the learnability of recursively enumerable

languages from good examples. Theoret. Comput. Sci., 261(1):3–29, 2001.
[15] C. Kuhlmann. On Teaching and Learning Intersection-Closed Concept Classes. In

Computat. Learning Theory, 4th European Conf., EuroCOLT ’99, Nordkirchen,
Germany, March 29-31, 1999, Proc., LNAI 1572, pp. 168–182, Springer, 1999.

108 F.J. Balbach and T. Zeugmann

[16] H. Lee, R.A. Servedio, and A. Wan. DNF Are Teachable in the Average Case. In
Learning Theory, 19th Ann. Conf. on Learning Theory, COLT 2006, Pittsburgh,
PA, USA, June 2006, Proc., LNAI 4005, pp. 214–228, Springer, 2006.

[17] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic plan-
ning and infinite-horizon partially observable markov decision problems. In Proc.
16th Nat. Conf. on Artificial Intelligence & 11th Conf. on Innovative Applications
of Artificial Intelligence, pp. 541–548, AAAI Press/MIT Press, 1999.

[18] H. D. Mathias. A model of interactive teaching. J. of Comput. Syst. Sci., 54(3):
487–501, 1997.

[19] S. D. Patek. On partially observed stochastic shortest path problems. In Proc. of
the 40-th IEEE Conf. on Decision and Control, pp. 5050–5055, 2001.

[20] A. Shinohara and S. Miyano. Teachability in computational learning. New Gen-
eration Computing, 8(4):337–348, 1991.

The Complexity of Learning SUBSEQ(A)

Stephen Fenner1,� and William Gasarch2,��

1 University of South Carolina
Dept. of Computer Science and Engineering, Columbia, SC 29208

fenner@cse.sc.edu
2 University of Maryland at College Park

Dept. of Computer Science and UMIACS, College Park, MD 20742
gasarch@cs.umd.edu

Abstract. Higman showed1 that if A is any language then SUBSEQ(A)
is regular, where SUBSEQ(A) is the language of all subsequences of
strings in A. We consider the following inductive inference problem: given
A(ε),A(0), A(1), A(00), . . . learn, in the limit, a DFA for SUBSEQ(A).
We consider this model of learning and the variants of it that are usually
studied in inductive inference: anomalies, mindchanges, and teams.

1 Introduction

In Inductive Inference [2, 4, 15] the basic model of learning is as follows.

Definition 1.1. A class A of decidable sets of strings2 is in EX if there is a
Turing machine M (the learner) such that if M is given A(ε), A(0), A(1), A(00),
A(01), A(10), A(11), A(000), . . . , where A ∈ A, then M will output e1, e2, e3, . . .
such that lims es = e and e is an index for a Turing machine that decides A.

Note that the set A must be computable and the learner learns a Turing machine
index for it. There are variants [1, 11, 13] where the set need not be computable
and the learner learns something about the set (e.g., “Is it infinite?” or some
other question).

Our work is based on the following remarkable theorem of Higman’s [16]3.
Convention: Σ is a finite alphabet.

Definition 1.2. Let x, y ∈ Σ∗. We say that x is a subsequence of y if x =
x1 · · ·xn and y ∈ Σ∗x1Σ

∗x2 · · ·xn−1Σ
∗xnΣ

∗. We denote this by x ' y.

Notation 1.3. If A is a set of strings, then SUBSEQ(A) is the set of subse-
quences of strings in A.

� Partially supported by NSF grant CCF-05-15269.
�� Partially supported by NSF grant CCR-01-05413.
1 The result we attribute to Higman is actually an easy consequence of his work. We

explain in the journal version.
2 The basic model is usually described in terms of learning computable functions;

however, virtually all of the results hold in the setting of decidable sets.
3 See footnote 1.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 109–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

110 S. Fenner and W. Gasarch

Theorem 1.4 (Higman [16]). If A is any language over Σ∗, then SUBSEQ(A)
is regular. In fact, for any language A there is a unique minimum finite set S of
strings such that

SUBSEQ(A) = {x ∈ Σ∗ : (∀z ∈ S)[z �' x]}. (1)

Note that A is any language whatsoever. Hence we can investigate the following
learning problem.

Notation 1.5. We let s1, s2, s3, . . . be the standard length-first lexicographic
enumeration of Σ∗. We refer to Turing machines as TMs.

Definition 1.6. A class A of sets of strings in Σ∗ is in SUBSEQ-EX if there
is a TM M (the learner) such that if M is given A(s1), A(s2), A(s3), . . . where
A ∈ A, then M will output e1, e2, e3, . . . such that lims es = e and e is an index
for a DFA that recognizes SUBSEQ(A). It is easy to see that we can take e
to be the least index of the minimum state DFA that recognizes SUBSEQ(A).
Formally, we will refer to A(s1)A(s2)A(s3) · · · as being on an auxiliary tape.

This problem is part of a general theme of research: given a language A, rather
than try to learn the language (which may be undecidable) learn some aspect of
it. In this case we learn SUBSEQ(A). Note that we learn SUBSEQ(A) in a very
strong way in that we have a DFA for it.

If A ∈ EX, then a TM can infer a Turing index for any A ∈ A. The index is
useful if you want to determine membership of particular strings, but not useful
if you want most global properties (e.g., “Is A infinite?”). If A ∈ SUBSEQ-EX,
then a TM can infer a DFA for SUBSEQ(A). The index is useful if you want
to determine virtually any property of SUBSEQ(A) (e.g., “Is SUBSEQ(A) infi-
nite?”) but not useful if you want to answer almost any question about A.

We look at anomalies, mind-changes, and teams (standard Inductive Inference
variants) in this context. We prove the following results.

1. A ∈ SUBSEQ-EXa means that the final DFA may be wrong on ≤ a strings.
A ∈ SUBSEQ-EX∗ mean that the final DFA may be wrong on a finite
number of strings. The anomaly hierarchy collapses: that is SUBSEQ-EX =
SUBSEQ-EX∗. This contrasts sharply with the case of EXa.

2. Let A ∈ SUBSEQ-EXn mean that the TM makes at most n+ 1 conjectures
(and hence changes its mind at most n times). The mind-change hierarchy
separates: that is, for all n, SUBSEQ-EXn ⊂ SUBSEQ-EXn+1.

3. The mind-change hierarchy also separates if you allow a transfinite number
of mind-changes, up to ωCK

1 .
4. Let A ∈ [a, b]SUBSEQ-EX mean that there are b TMs trying to learn the

DFA, and we demand that at least a of them succeed (it may be a different
a machines for different A ∈ A).
(a) If 1 ≤ a ≤ b and q = �b/a�, then [a, b]SUBSEQ-EX = [1, q]SUBSEQ-EX.

Hence we need only look at team learning of the form [1, n]SUBSEQ-EX.
(b) The team hierarchy separates. That is, for all b, [1, b]SUBSEQ-EX ⊂

[1, b + 1]SUBSEQ-EX.

The Complexity of Learning SUBSEQ(A) 111

Note 1.7. PEX [4, 3] is like EX except that the conjectures must be for total
TMs. The class SUBSEQ-EX is similar in that all the machines are total (in fact,
DFAs) but different in that we learn the subsequence language, and the input
need not be computable. The anomaly hierarchy for SUBSEQ-EX collapses just
as it does for PEX; however the team hierarchy for SUBSEQ-EX is proper, unlike
for PEX.

2 Definitions

2.1 Definitions About Subsequences

Notation 2.1. We let N = {0, 1, 2, . . .}. For n ∈ N and alphabet Σ, we let Σ=n

denote the set of all strings over Σ of length n. We also define Σ≤n =
⋃

i≤n Σ=i

and Σ<n =
⋃

i<n Σ=i.

Notation 2.2. Given a languageA, we call the unique minimum set S satisfying
(1) the obstruction set of A and denote it by os(A). In this case, we also say
that S obstructs A.

The following facts are obvious:

– The ' relation is computable.
– For every string x there are finitely many y ' x, and given x one can compute

a canonical index for the set of all such y.
– By various facts from automata theory, including the Myhill-Nerode mini-

mization theorem: given a DFA, NFA, or regular expression for a language
A, one can effectively compute the unique minimum state DFA recognizing
A. (The minimum state DFA is given in some canonical form.)

– Given DFAs F and G, one can effectively compute DFAs for L(F), L(F) ∪
L(G), L(F)∩L(G), L(F)−L(G), and L(F)(L(G) (symmetric difference).
One can also effectively determine whether or not L(F) = ∅ and whether or
not L(F) is finite.

– For any language A, the set SUBSEQ(A) is completely determined by os(A),
and in fact, os(A) = os(SUBSEQ(A)).

– The strings in the obstruction set of a language must be pairwise'-incompar-
able (i.e., the obstruction set is an '-antichain). Conversely, any '-antichain
obstructs some language. For any S ⊆ Σ∗ define

obsby(S) = {x ∈ Σ∗ : (∀z ∈ S)[z �' x]}.

The term obsby(S) is an abbreviation for ‘obstructed by S’. Note that
os(obsby(S)) ⊆ S, and equality holds iff S is an '-antichain.

Definition 2.3. A language A ⊆ Σ∗ is '-closed if SUBSEQ(A) = A.

Observation 2.4. A language A is '-closed if and only if there exists a lan-
guage B such that A = SUBSEQ(B).

112 S. Fenner and W. Gasarch

Observation 2.5. Any infinite '-closed set contains strings of every length.

The next proposition implies that finding os(A) is computationally equivalent
to finding a DFA for SUBSEQ(A). We omit the easy proof.

Proposition 2.6. The following tasks are computable:

1. Given a DFA F , find a DFA G such that L(G) = SUBSEQ(L(F)).
2. Given the canonical index of a finite language D ⊆ Σ∗, compute a regular

expression for (and hence the minimum state DFA recognizing) the language
obsby(D) = {x ∈ Σ∗ : (∀z ∈ D)[z �' x]}.

3. Given a DFA F , decide whether or not L(F) is '-closed.
4. Given a DFA F , compute the canonical index of os(L(F)).

2.2 Classes of Languages

We define classes of languages via the types of machines that recognize them.

Notation 2.7.

1. D1, D2, . . . is a standard enumeration of finite languages. (e is the canonical
index of De.)

2. F1, F2, . . . is a standard enumeration of minimized DFAs, presented in some
canonical form, so that for all i and j, if L(Fi) = L(Fj) then Fi = Fj . (We
might have i �= j and Fi = Fj , however.) Let REG = {L(F1), L(F2), . . .}.

3. P1, P2, . . . is a standard enumeration of {0, 1}-valued polynomial-time TMs.
Let P = {L(P1), L(P2), . . .}. Note that these are total.

4. M1,M2, . . . is a standard enumeration of Turing machines. We let CE =
{L(M1), L(M2), . . .}, where L(Mi) is the set of all x such that Mi(x) halts
with output 1 (i.e., Mi(x) accepts). CE stands for “computably enumerable.”

5. We let DEC = {L(N) : N is a total TM}.

For the notation that relates to computability theory, our reference is [20].
For separation results, we will often construct tally sets, i.e., subsets of 0∗.

Notation 2.8.

1. The empty string is denoted by ε.
2. For m ∈ N, we define Jm = {0i : i < m}.
3. If A ⊆ 0∗ is finite, we let m(A) denote the least m such that A ⊆ Jm, and

we observe that SUBSEQ(A) = Jm(A).
4. If A is a set then P(A) is the powerset of A.

If A,B ⊆ 0∗ and A is finite, we define a “shifted join” of A and B as follows:

A∪+B = {02n+1 : 0n ∈ A} ∪ {02(m(A)+n) : 0n ∈ B}.

In A∪+B, all the elements from A have odd length and are shorter than the
elements from B, which have even length.

The Complexity of Learning SUBSEQ(A) 113

2.3 Variants on SUBSEQ-EX

There are several variations on the definition of SUBSEQ-EX.

Definition 2.9. Let e1, e2, . . . be the output sequence of some learner M on
some language A. Let t > 1. We say that M changes its mind at time t if
et �= et−1. For fixed n ≥ 0, let SUBSEQ-EXn be the same as SUBSEQ-EX
except that we restrict the learner to change its mind no more than n times, for
any language A ∈ C.

Obviously,

SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ SUBSEQ-EX2 ⊆ · · · ⊆ SUBSEQ-EX. (2)

We will extend this definition into the transfinite later.

Definition 2.10. Let a ∈ N, let M be a TM, and let A ⊆ Σ∗ be any language.
The machine M learns SUBSEQ(A) with at most a anomalies (respectively,
with finitely many anomalies) if it behaves as follows: when you feed A(s1),
A(s2), A(s3), . . . and M outputs e1, e2, e3, . . . , then e = limn→∞ en exists, and
|L(Fe)(SUBSEQ(A)| ≤ a (respectively, L(Fe)(SUBSEQ(A) is finite). For
a ∈ N let SUBSEQ-EXa be the same as SUBSEQ-EX except that we allow the
learner to learn SUBSEQ(A) with at most a anomalies. Let SUBSEQ-EX∗ be the
same as SUBSEQ-EX except that we allow the learner to learn SUBSEQ(A) with
finitely many anomalies. Note that in the latter case, the number of anomalies
may vary with the language being learned.

Clearly,

SUBSEQ-EX = SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ · · · ⊆ SUBSEQ-EX∗. (3)

Definition 2.11. For integers 1 ≤ a ≤ b, we say that a class C of languages is
in [a, b]SUBSEQ-EX iff there are learners M1, . . . ,Mb such that for any A ∈ C,
at least a of the learners learn SUBSEQ(A).

Evidently, if a ≥ c and b ≤ d, then [a, b]SUBSEQ-EX ⊆ [c, d]SUBSEQ-EX.

Definition 2.12. If X ⊆ N, then SUBSEQ-EXX is the same as SUBSEQ-EX
except that we allow the learner to be an oracle TM using oracle X .

We may combine these variants in a large variety of ways.

3 Main Results

3.1 Standard Learning

It was essentially shown in [6] that DEC /∈ SUBSEQ-EX. The proof there can be
tweaked to show the stronger result that P /∈ SUBSEQ-EX. We omit the proof;
however, it will appear in the full version.

114 S. Fenner and W. Gasarch

Theorem 3.1 ([6]). There is a computable function g such that for all e, setting
A = L(Pg(e)), we have A ⊆ 0∗ and SUBSEQ(A) is not learned by Me.

Corollary 3.2. P /∈ SUBSEQ-EX. In fact, P ∩ P(0∗) /∈ SUBSEQ-EX.

We now show some classes that are in SUBSEQ-EX. An additional example is
given in Section 4.

Definition 3.3. Let F = {A ⊆ Σ∗ : A is finite}.

Proposition 3.4. F ∈ SUBSEQ-EX.

Proof. Let M be a learner that, when A ∈ F is on the tape, outputs k1, k2, . . . ,
where each ki is the least index of a DFA recognizing SUBSEQ(A ∩Σ≤i).
Clearly, M learns SUBSEQ(A). ��

More generally, we have

Proposition 3.5. REG ∈ SUBSEQ-EX.

Proof. When A is on the tape, n = 0, 1, 2, . . . , the learner M

1. finds the least k such that A ∩Σ<n = L(Fk) ∩Σ<n, then
2. outputs the least such that L(F�) = SUBSEQ(L(Fk)).

If A is regular, then clearly M will converge to the least k such that A = L(Fk),
whence M will converge to the least such that L(F�) = SUBSEQ(A). ��

3.2 Anomalies

The next theorem shows that the hierarchy of (3) collapses completely.

Theorem 3.6. SUBSEQ-EX = SUBSEQ-EX∗. In fact, there is a computable
h such that for all e and languages A, if Me learns SUBSEQ(A) with finitely
many anomalies, then Mh(e) learns SUBSEQ(A) (with zero anomalies).

Proof. Given e, let M = Mh(e) be the following learner:
When a language A is on the tape:

1. Run Me with A. Wait for Me to output something.
2. Whenever Me outputs some index k do the following:

(a) Let n be the number of outputs of Me thus far.
(b) Build a finite set E of anomalies as follows:

i. Initially, E := ∅.
ii. For each w ∈ Σ<n, define S(w) = {z ∈ Σ∗ : w ' z}.

– If Fk rejects w but S(w) ∩Σ≤n ∩A �= ∅, then put w into E. (w
is a “false negative.”)

– If Fk accepts w but S(w)∩Σ≤n∩A = ∅ and S(w)∩Σ=n∩L(Fk) =
∅, then put w into E. (w is a “potentially false positive.”)

(c) Output the least index for a DFA G such that L(G) = L(Fk)(E.

The Complexity of Learning SUBSEQ(A) 115

If Me learns SUBSEQ(A) with finite anomalies, then there is a DFA F such
that for all large enough n the nth output of Me is an index for F , and more-
over, SUBSEQ(A)(L(F) ⊆ Σ<n (all anomalies are of length less than n). We
claim that for all large enough n the anomaly set E built in step 2b is exactly
SUBSEQ(A)(L(F), and hence SUBSEQ(A) = L(G), where G is output by M
in step 2c. The theorem follows once we prove the claim.

Let n be large enough as above, and let w be any string in Σ<n. There are
four cases to consider:

w /∈ SUBSEQ(A) ∪ L(F). Then F (w) rejects and S(w) ∩ A = ∅, so we don’t
put w into E. (w is a “true negative.”)

w ∈ SUBSEQ(A) − L(F). Then F (w) rejects, but there is some z ∈ S(w)∩A.
So as long as n ≥ |z|, i.e., z ∈ Σ≤n, we will put w into E.

w ∈ L(F) − SUBSEQ(A). Then F (w) accepts, and S(w) ∩ A = ∅. Further-
more, S(w) ∩ SUBSEQ(A) = ∅ as well, and since there are no anomalies of
length n, we must also have S(w)∩Σ=n ∩L(F) = ∅. Thus we put w into E.

w ∈ SUBSEQ(A) ∩ L(F). Then F (w) accepts. Since w ∈ SUBSEQ(A), there
is a z ∈ S(w) ∩ A. If |z| ≤ n, then S(w) ∩ Σ≤n ∩ A �= ∅, and we would not
put w into E. If |z| > n, then there is some y ∈ Σ=n with w ' y ' z. Thus
we have y ∈ SUBSEQ(A), and since there are no anomalies of length n, we
also have y ∈ L(F). Therefore, y ∈ S(w)∩Σ=n ∩L(F) �= ∅, and so we don’t
put w into E.

Thus E = (SUBSEQ(A)(L(F)) ∩ Σ<n = SUBSEQ(A)(L(F) for all large
enough n. The claim follows. ��

3.3 Mind Changes

The next theorems show that the hierarchy (2) separates.

Definition 3.7. For every i > 0, define the class Ci = {A ⊆ Σ∗ : |A| ≤ i}.

Theorem 3.8. Ci ∈ SUBSEQ-EXi for all i ∈ N. In fact, there is a single learner
M that for each i learns SUBSEQ(A) for every A ∈ Ci with at most i mind-
changes.

Proof. Let M be as in the proof of Proposition 3.4. Clearly, M learns any A ∈ Ci

with at most |A| mind-changes. ��

Theorem 3.9. For each i > 0, Ci ∩ P(0∗) /∈ SUBSEQ-EXi−1. In fact, there
is a computable function such that, for each e and i > 0, M�(e,i) is total and
decides a unary language Ae,i = L(M�(e,i)) ⊆ 0∗ such that |Ae,i| ≤ i and Me

does not learn SUBSEQ(Ae,i) with fewer than i mind-changes.

Proof. Given e and i > 0 we use the Recursion Theorem with Parameters to con-
struct a machine N = M�(e,i) that implements the following recursive algorithm
to compute Ae,i:

116 S. Fenner and W. Gasarch

Given input x,

1. If x /∈ 0∗, then reject. (This ensures that Ae,i ⊆ 0∗.) Otherwise, let x = 0n.
2. Recursively compute Rn = Ae,i ∩ Jn.
3. Simulate Me for n − 1 steps with Rn on the tape. (Note that Me does not

have time to read any of the tape corresponding to inputs 0n′
for n′ ≥ n.)

If Me does not output anything within this time, then reject.
4. Let k be the most recent output of Me in the previous step, and let c be the

number of mind-changes that Me has made up to this point. If c < i and
L(Fk) = SUBSEQ(Rn), then accept; else reject.

In step 3 of the algorithm, Me behaves the same with Rn on its tape as it
would with Ae,i on its tape, given the limit on its running time.

Let Ae,i = {0z0, 0z1 , . . .}, where z0 < z1 < · · · are natural numbers.

Claim 3.10. For 0 ≤ j, if zj exists, then Me (with Ae,i on its tape) must output
a DFA for SUBSEQ(Rzj) within zj − 1 steps, having changed its mind at least
j times when this occurs.

Proof (of the claim). We proceed by induction on j: For j = 0, the string 0z0

is accepted by N only if within z0 − 1 steps Me outputs a k where L(Fk) =
∅ = SUBSEQ(Rz0); no mind-changes are required. Now assume that j ≥ 0 and
zj+1 exists, and also (for the inductive hypothesis) that within zj − 1 steps
Me outputs a DFA for SUBSEQ(Rzj) after at least j mind-changes. We have
Rzj ⊆ Jzj but 0zj ∈ Rzj+1 , and so SUBSEQ(Rzj) �= SUBSEQ(Rzj+1). Since N
accepts 0zj+1 , it must be because Me has just output a DFA for SUBSEQ(Rzj+1)
within zj+1 − 1 steps, thus having changed its mind at least once since the zjth
step of its computation, making at least j + 1 mind-changes in all. So the claim
holds for j + 1. This ends the proof of the claim. ��

First we show that Ae,i ∈ Ci. Indeed, by Claim 3.10, zi cannot exist, because
the algorithm would explicitly reject such a string 0zi if Me made at least i
mind-changes in the first zi − 1 steps. Thus we have |Ae,i| ≤ i, and so Ae,i ∈ Ci.

Next we show that Me cannot learn Ae,i with fewer than i mind-changes.
Suppose that with Ae,i on its tape, Me makes fewer than i mind-changes. Sup-
pose also that there is a DFA F such that cofinitely many of Me’s outputs are
indices for F . Let t be least such that t ≥ m(Ae,i) and Me outputs an index for
F within t− 1 steps. Then L(F) �= SUBSEQ(Ae,i), for otherwise the algorithm
would accept 0t and so 0t ∈ Ae,i, contradicting the choice of t. It follows that
Me cannot learn Ae,i with fewer than i mind-changes. ��

Transfinite Mind Changes and Procrastination. We extend the results
of this section into the transfinite. Freivalds & Smith defined EXα for all con-
structive ordinals α [8]. When α < ω, the definition is the same as the finite
mind-change case above. If α ≥ ω, then the learner may revise its bound on
the number of mind changes during the computation. The learner may be able
to revise more than once, or even compute a bound on the number of future
revisions, and this bound itself could be revised, etc., depending on the size of α.

The Complexity of Learning SUBSEQ(A) 117

We define SUBSEQ-EXα for all constructive α, then describe (without proof)
how this transfinite hierarchy separates. Our definition is slightly different from,
but equivalent to, the definition in [8]. For general background on constructive
ordinals, see [18, 19].

Definition 3.11. A procrastinating learner is a learner M equipped with an
additional ordinal tape, whose contents is always a constructive ordinal. Given a
language on its input tape, M runs forever, producing infinitely many outputs as
usual, except that just before M changes its mind, if α is currently on its ordinal
tape, M is required to compute some ordinal β < α and replace the contents of
the ordinal tape with β before proceeding to change its mind. (So if α = 0, no
mind-change may take place.) M may alter its ordinal tape at any other time,
but the only allowed change is replacement with a lesser ordinal.

Thus a procrastinating learner must decrease its ordinal tape before each mind-
change. We abuse notation and let M1,M2, . . . be a standard enumeration of
procrastinating learners. Such an effective enumeration can be shown to exist.

Definition 3.12. Let M be a procrastinating learner, α a constructive ordinal,
and A a language. We say that M learns SUBSEQ(A) with α mind-changes if
M learns SUBSEQ(A) with α initially on its ordinal tape.

If C is a class of languages, we say that C ∈ SUBSEQ-EXα if there is a
procrastinating learner that learns every language in C with α mind-changes.

The following is straightforward and given without proof.

Proposition 3.13. If α < ω, then SUBSEQ-EXα is equal to the corresponding
class in Definition 2.9.

Proposition 3.14. For all α < β < ωCK
1 ,

SUBSEQ-EXα ⊆ SUBSEQ-EXβ ⊆ SUBSEQ-EX.

Proof. The first containment follows from the fact that any procrastinating
learner allowed α mind-changes can be simulated by a procrastinating learner,
allowed β mind-changes, that first decreases its ordinal tape from β to α before
the simulation. (α is hard-coded into the simulator.)

The second containment is trivial; any procrastinating learner is also a regular
learner. ��

In [8], Freivalds and Smith showed that the EXα hierarchy separates using classes
of languages constructed entirely by diagonalization. We take a different ap-
proach and define more “natural” (using the term loosely) classes of languages
that separate the SUBSEQ-EXα hierarchy.

Definition 3.15. For every α < ωCK
1 , we define the class Fα inductively as

follows: Let n and λ uniquely satisfy n < ω, λ is not a successor, and λ+n = α.

– If λ = 0, let Fα = Fn = {A∪+ ∅ : (A ⊆ 0∗) ∧ (|A| ≤ n)}.

118 S. Fenner and W. Gasarch

– If λ > 0, then λ has notation 3 · 5e for some TM index e (see [19]). Let

Fα = {A∪+B : (A,B ⊆ 0∗) ∧ (|A| ≤ n + 1) ∧ (B ∈ FMe(m(A)))}.

It is evident by induction on α that Fα consists only of finite unary languages,
and that ∅ ∈ Fα. Note that in the case of finite α we have the condition that
|A| ≤ n, but in the case of α ≥ ω we have the condition that |A| ≤ n + 1. This
is not a mistake.

The next two theorems have proofs that are similar to the finite mind-change
case in some ways, but very different in others. Unfortunately we have to omit
the proofs for this version.

Theorem 3.16. For every constructive α, Fα ∈ SUBSEQ-EXα. In fact, there is
a single procrastinating learner N such that for every α, N learns every language
in Fα with α mind-changes.

Theorem 3.17. For all β < α < ωCK
1 , Fα /∈ SUBSEQ-EXβ. In fact, there is a

computable function r such that, for each e and β < α < ωCK
1 , Mr(e,α,β) is total

and decides a language Ae,α,β = L(Mr(e,α,β)) ∈ Fα such that Me does not learn
SUBSEQ(Ae,α,β) with β mind-changes.

We end with an easy observation.

Corollary 3.18. SUBSEQ-EX �⊆
⋃

α<ωCK
1

SUBSEQ-EXα.

Proof. Let F ∈ SUBSEQ-EX be the class of Definition 3.3. For all α < ωCK
1 , we

clearly have Fα+1 ⊆ F , and so F /∈ SUBSEQ-EXα by Theorem 3.17. ��

3.4 Teams

In this section, we show that [a, b]SUBSEQ-EX depends only on �b/a�. Recall
that b ≤ c implies [a, b]SUBSEQ-EX ⊆ [a, c]SUBSEQ-EX.

Lemma 3.19. For all 1 ≤ a ≤ b, [a, b]SUBSEQ-EX = [1, �b/a�]SUBSEQ-EX.

Proof. Let q = �b/a�. To show that [1, q]SUBSEQ-EX ⊆ [a, b]SUBSEQ-EX, let
C ∈ [1, q]SUBSEQ-EX. Then there are learners Q1, . . . , Qq such that for all A ∈ C
there is some Qi that learns SUBSEQ(A). For all 1 ≤ i ≤ q and 1 ≤ j ≤ a, let
Ni,j = Qi. Then clearly, C ∈ [a, qa]SUBSEQ-EX as witnessed by the Ni,j . Thus,
C ∈ [a, b]SUBSEQ-EX, since b ≥ qa.

To show the reverse containment, suppose that D ∈ [a, b]SUBSEQ-EX. Let
Q1, . . . , Qb be learners such that for each A ∈ D, at least a of the Qi’s learn
SUBSEQ(A). We define learners N1, . . . , Nq to behave as follows.

Each Nj runs all of Q1, . . . , Qb. At any time t, let k1(t), . . . , kb(t) be the most
recent outputs of Q1, . . . , Qb, respectively, after running for t steps (if some
machine Qi has not yet output anything in t steps, let ki(t) = 0).

Define a consensus value at time t to be a value that shows up at least a times
in the list k1(t), . . . , kb(t). There can be at most q many different consensus values

The Complexity of Learning SUBSEQ(A) 119

at any given time. The idea is that the machines Nj output consensus values. If
kcorrect is the least index of a DFA recognizing SUBSEQ(A), then kcorrect will be
a consensus value at all sufficiently large times t, and so we hope that kcorrect will
eventually always be output by some Nj . We could simply assign each consensus
value at time t to be output by one of the machines N1, . . . , Nq to guarantee
that kcorrect is eventually always output by one or another of the Nj , but this
does not suffice, because it may be output by different Nj at different times. The
tricky part is to ensure that kcorrect is eventually output not only by some Nj ,
but also by the same Nj each time. To make sure of this, we hold a popularity
contest among the consensus values.

For 1 ≤ j ≤ q and t = 1, 2, 3, . . . , each machine Nj computes k1(t′), . . . , kb(t′)
and all the consensus values at time t′ for all t′ ≤ t. For each v ∈ N, let pv(t)
be the number of times ≤ t at which v is a consensus value. We call pv(t) the
popularity of v at time t. We rank all the consensus values found so far (at all
times t′ ≤ t) in order of decreasing popularity; if there is a tie, i.e., some u �= v
such that pu(t) = pv(t), then we consider the smaller value to be more popular.
As its t’th output, Nj outputs the j’th most popular consensus value at time t.

This ends the description of the machines N1, . . . , Nq.
We’ll be done if we can show that there is a 1 ≤ j ≤ q such that Nj outputs

kcorrect cofinitely often.
Let t0 be least such that kcorrect is a consensus value at time t for all t ≥ t0.

We claim that

– from t0 on, kcorrect will never lose ground in the popularity rankings, and
– eventually kcorrect will be one of the q most popular consensus values.

For all t ≥ t0, let P (t) be the set of all values that are at least as popular as
kcorrect at time t. That is,

P (t) = {v ∈ N : either pv(t) > pkcorrect (t) or pv(t) = pkcorrect (t) and v ≤ kcorrect}.

We claim that P (t0) ⊇ P (t0 + 1) ⊇ P (t0 + 2) ⊇ · · · . This holds because the
only way for a value v to go from being less popular than kcorrect to being more
popular than kcorrect is for there to be a time t ≥ t0 when v is a consensus value
but kcorrect is not, but this never happens.

Since the P (t) are clearly all finite, there is a t1 ≥ t0 such that P (t1) =
P (t1 +1) = P (t1 +2) = · · · =

⋂
t P (t). Set P = P (t1), and let r = |P |. It suffices

to show that r ≤ q, for then Nr outputs kcorrect for all t ≥ t1 and so Nr learns
SUBSEQ(A).

Suppose r > q. Let v1, . . . , vr−1 ∈ P be the values in P other than kcorrect. For
each t ≥ t1, there can be at most q consensus values at time t, and one of these
is kcorrect, so at least one of v1, . . . , vr−1 does not appear as a consensus value
at time t. By the pigeon hole principle, there is some vi that does not appear as
a consensus value at time t for infinitely many t ≥ t1. For every t ≥ t1 we have
pkcorrect (t + 1) = pkcorrect (t) + 1, and

pvi(t + 1) =
{
pvi(t) + 1 if vi is a consensus value at time t + 1,
pvi(t) otherwise,

120 S. Fenner and W. Gasarch

and the second case occurs infinitely often. Thus there is some t2 ≥ t1 such
that pvi(t2) < pkcorrect (t2), making vi less popular than kcorrect at time t2. Thus
vi /∈ P , which is a contradiction. Hence, r ≤ q, and we are done. ��

To prove a separation, we describe classes A1,A2, . . . and prove that for any
n > 1, An ∈ [1, n]SUBSEQ-EX− [1, n− 1]SUBSEQ-EX.

Notation 3.20. For languages A,B ⊆ Σ∗, we write A ⊆∗ B to mean that
A−B is finite.

Definition 3.21. For i ≥ 1, let Ri be the language (0∗1∗)i, and define

Qi = {A ⊆ {0, 1}∗ : Ri ⊆ SUBSEQ(A) ⊆∗ Ri}.

For all n ≥ 1, define An = Q1 ∪ Q2 ∪ · · · ∪ Qn.

Note that R1 ⊆ R2 ⊆ R3 ⊆ · · ·, but Ri+1 �⊆∗ Ri for any i ≥ 1. This means that
the Qi are all pairwise disjoint. Also note that SUBSEQ(Ri) = Ri for all i ≥ 1.
Finally, note that A ∈ Qi implies SUBSEQ(A) ∈ Qi.

Lemma 3.22. For all n > 1, An ∈ [1, n]SUBSEQ-EX and An ∩DEC /∈ [1, n−
1]SUBSEQ-EX. In fact, there is a computable function d(s) such that for all
n > 1 and all e1, . . . , en−1, the machine Md([e1,...,en−1]) decides a language
A[e1,...,en−1] ∈ An that is not learned by any of Me1 , . . . ,Men−1 .

4

Proof. To see that An ∈ [1, n]SUBSEQ-EX, let Q1, . . . , Qn be learners that
behave as follows given a language A on their tapes: For 1 ≤ i ≤ n, Qi

outputs ki,1, ki,2, ki,3, . . . , where ki,j is the least index of a DFA recognizing
Ri ∪ SUBSEQ(A ∩Σ≤j). Suppose A ∈ Qi for some 1 ≤ i ≤ n. We claim
that Qi learns SUBSEQ(A). Since A ∈ Qi, there is a finite set D such that
SUBSEQ(A) = Ri∪D. For every x ∈ D, there is a y ∈ A with x ' y. Because D
is finite, this implies that D ⊆ SUBSEQ(A ∩Σ≤j) for all large enough j. Then
for all such j,

SUBSEQ(A) = Ri ∪D ⊆
Ri ∪ SUBSEQ(A ∩Σ≤j) ⊆ SUBSEQ(A) ∪ SUBSEQ(A) = SUBSEQ(A),

and thus SUBSEQ(A) = Ri ∪ SUBSEQ(A ∩Σ≤j) for all large enough j. This
proves the claim, and shows that An ∈ [1, n]SUBSEQ-EX.

To show that An /∈ [1, n − 1]SUBSEQ-EX effectively, we use the Recursion
Theorem with Parameters to define a computable function d(s) such that for
all n > 1 and e1, . . . , en−1, the machine Md([e1,...,en−1]) is total and decides a
language A = A[e1,...,en−1] ∈ An, and SUBSEQ(A) is not learned by any of
Me1 , . . . ,Men−1 . The machine Md([e1,...,en−1]) has some input alphabet Σ such
that 0, 1 ∈ Σ, and it decides A via the following recursive algorithm:

4 [e1, e2, . . . , en−1] is a natural number encoding the finite sequence e1, e2, . . . , en−1.

The Complexity of Learning SUBSEQ(A) 121

On input x ∈ Σ∗:

1. If x is not of the form (0t1t)i, where t ≥ 1 and 1 ≤ i ≤ n, then reject. (This
ensures that A ⊆ {(0t1t)i : (t ≥ 1)∧ (1 ≤ i ≤ n)}.) Otherwise, let t and i be
such that x = (0t1t)i.

2. Recursively compute Bt := A ∩ {(0s1s)� : (1 ≤ s < t) ∧ (1 ≤ ≤ n)}.
3. Compute k1(t), . . . , kn−1(t), the most recent outputs of Me1 , . . . ,Men−1 , re-

spectively, after running for t steps with Bt on their tapes. If some Mej has
not yet output anything within t steps, then set kj(t) = 0. (None of these
machines has time to scan any tape cells corresponding to strings of the form
(0u1u)� where ≥ 1 and u ≥ t, so the machines’ behaviors with Bt on their
tapes are the same as with A on their tapes.)

4. Let 1 ≤ it ≤ n be least such that there is no 1 ≤ j ≤ n − 1 such that
L(Fkj(t)) ∈ Qit . (Such an it exists by the disjointness of the Qi and by the
pigeon hole principle, and we can compute such an it.)

5. If i = it, then accept; else reject.

By the pigeon hole principle, there is some largest imax that is found in step 4
for infinitely many values of t. That is, it = imax for infinitely many t, and
it > imax for only finitely many t.

We first claim that A ∈ Qimax , and hence A ∈ An. Since A contains strings of
the form (0t1t)imax for arbitrarily large t, it is clear that Rimax ⊆ SUBSEQ(A).
By the choice of imax, there is a t0 such that A contains no strings of the form
(0t1t)i where i > imax and t > t0. Therefore the set D = A−Rimax is finite, and
we also have SUBSEQ(A) = Rimax ∪SUBSEQ(D). Thus SUBSEQ(A) ⊆∗ Rimax ,
and so we have A ∈ Qimax , which in turn implies SUBSEQ(A) ∈ Qimax .

We next claim that no Mej learns SUBSEQ(A) for any 1 ≤ j ≤ n− 1. This is
immediate by the choice of imax: For infinitely many t, none of the kj(t) satisfies
L(Fkj(t)) ∈ Qimax , and so none of the Mej can learn SUBSEQ(A). ��

Lemmas 3.19 and 3.22 combine to show the following general theorem, which
completely characterizes the containment relationships between the various team
learning classes [a, b]SUBSEQ-EX.

Theorem 3.23. For every 1 ≤ a ≤ b and 1 ≤ c ≤ d, [a, b]SUBSEQ-EX ⊆
[c, d]SUBSEQ-EX if and only if �b/a� ≤ �d/c�.

Proof. Let p = �b/a� and let q = �d/c�. By Lemma 3.19, [a, b]SUBSEQ-EX =
[1, p]SUBSEQ-EX and [c, d]SUBSEQ-EX = [1, q]SUBSEQ-EX. By Lemma 3.22,
[1, p]SUBSEQ-EX ⊆ [1, q]SUBSEQ-EX if and only if p ≤ q. ��

4 Rich Classes

Are there classes in SUBSEQ-EX containing languages of arbitrary complexity?
Yes, trivially.

Proposition 4.1. There is a C ∈ SUBSEQ-EX0 such that for all A ⊆ N, there
is a B ∈ C with B ≡T A.

122 S. Fenner and W. Gasarch

Proof. Let C = {A ⊆ Σ∗ : |A| = ∞∧ (∀x, y ∈ Σ∗)[x ∈ A ∧ |x| = |y| → y ∈ A]}.
That is, C is the class of all infinite languages, membership in whom depends
only on a string’s length.

For any A ⊆ N, define

LA =
{
Σ∗ if A is finite,⋃

n∈A Σ=n otherwise.

Clearly, LA ∈ C and A ≡T LA. Furthermore, SUBSEQ(LA) = Σ∗, and so
C ∈ SUBSEQ-EX0 witnessed by a learner that always outputs a DFA for Σ∗.

��

In Proposition 3.5 we showed that REG ∈ SUBSEQ-EX. Note that the A ∈ REG
are trivial in terms of computability, but the languages in SUBSEQ(REG) can
be rather complex (large obstruction sets, arbitrary '-closed sets). By con-
trast, in Proposition 4.1, we show that there can be A ∈ SUBSEQ-EX of ar-
bitrarily high Turing degree but SUBSEQ(A) is trivial. Can we obtain classes
A ∈ SUBSEQ-EX where A ∈ A has arbitrary Turing degree and SUBSEQ(A)
has arbitrary'-closed sets independently? Yes, subject to an obvious restriction.

Definition 4.2. A class C of languages is rich if for every A ⊆ N and '-closed
S ⊆ Σ∗, there is a B ∈ C such that SUBSEQ(B) = S and, provided S is infinite,
B ≡T A.

Definition 4.3. Let G be the class of all languages A ⊆ Σ∗ for which there
exists a length c = c(A) ∈ N (necessarily unique) such that

1. A ∩Σ=c = ∅,
2. A ∩Σ=n �= ∅ for all n < c, and
3. os(A) = os(A ∩Σ≤c+1) ∩Σ≤c.

In the full paper, we show the following:

Proposition 4.4. G ∈ SUBSEQ-EX0 and G is rich.

5 Open Questions

We can combine teams, mindchanges, and anomalies in different ways. For exam-
ple, for which a, b, c, d, e, f, g is [a, b]SUBSEQ-EXd

c ⊆ [e, f]SUBSEQ-EXh
g? This

problem has been difficult in the standard case of EX though there have been
some very interesting results [9, 5]. The setting of SUBSEQ-EX may be easier
since all the machines that are output are total.

We can also combine the two notions of queries with SUBSEQ-EX and its
variants. The two notions are allowing queries about the set [14, 12, 10] and al-
lowing queries to an undecidable set [7, 17]. In the full paper, we show that
CE ∈ SUBSEQ-EX∅′

, where ∅′ is the halting problem and CE is the class of
computably enumerable sets.5

5 These sets used to be called recursively enumerable.

The Complexity of Learning SUBSEQ(A) 123

References

1. G. Baliga and J. Case. Learning with higher order additional information. In Proc.
5th Int. Workshop on Algorithmic Learning Theory, pages 64–75. Springer-Verlag,
1994.

2. L. Blum and M. Blum. Towards a mathematical theory of inductive inference.
Information and Computation, 28:125–155, 1975.

3. J. Case, S. Jain, and S. N. Manguelle. Refinements of inductive inference by
Popperian and reliable machines. Kybernetika, 30–1:23–52, 1994.

4. J. Case and C. H. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

5. R. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probabil-
ity 1/2 barrier in FIN-type learning. Journal of Computer and System Sciences,
50:574–599, 1995.

6. S. Fenner, W. Gasarch, and B. Postow. The complexity of finding SUBSEQ(L),
2006. Unpublished manuscript.

7. L. Fortnow, S. Jain, W. Gasarch, E. Kinber, M. Kummer, S. Kurtz, M. Pleszkoch,
T. Slaman, F. Stephan, and R. Solovay. Extremes in the degrees of inferability.
Annals of Pure and Applied Logic, 66:21–276, 1994.

8. R. Freivalds and C. H. Smith. On the role of procrastination for machine learning.
Information and Computation, 107(2):237–271, 1993.

9. R. Freivalds, C. H. Smith, and M. Velauthapillai. Trade-off among parameters
affecting inductive inference. Information and Computation, 82(3):323–349, Sept.
1989.

10. W. Gasarch, E. Kinber, M. Pleszkoch, C. H. Smith, and T. Zeugmann. Learning
via queries, teams, and anomalies. Fundamenta Informaticae, 23:67–89, 1995. Prior
version in Computational Learning Theory (COLT), 1990.

11. W. Gasarch and A. Lee. Inferring answers to queries. In Proceedings of 10th Annual
ACM Conference on Computational Learning Theory, pages 275–284, 1997. Long
version on Gasarch’s home page, in progress, much expanded.

12. W. Gasarch, M. Pleszkoch, and R. Solovay. Learning via queries to [+, <]. Journal
of Symbolic Logic, 57(1):53–81, Mar. 1992.

13. W. Gasarch, M. Pleszkoch, F. Stephan, and M. Velauthapillai. Classification using
information. Annals of Math and AI, pages 147–168, 1998. Earlier version in Proc.
5th Int. Workshop on Algorithmic Learning Theory, 1994, 290–300.

14. W. Gasarch and C. H. Smith. Learning via queries. Journal of the ACM, 39(3):649–
675, July 1992. Prior version in IEEE Sym. on Found. of Comp. Sci. (FOCS), 1988.

15. E. M. Gold. Language identification in the limit. Information and Computation,
10(10):447–474, 1967.

16. A. G. Higman. Ordering by divisibility in abstract algebra. Proc. of the London
Math Society, 3:326–336, 1952.

17. M. Kummer and F. Stephan. On the structure of the degrees of inferability. Journal
of Computer and System Sciences, 52(2):214–238, 1996. Prior version in Sixth
Annual Conference on Computational Learning Theory (COLT), 1993.

18. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted by MIT Press, 1987.

19. G. E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1990.

20. R. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1987.

Mind Change Complexity of Inferring
Unbounded Unions of Pattern Languages from

Positive Data

Matthew de Brecht and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto, Japan 606-8501

matthew@mbox.kudpc.kyoto-u.ac.jp,
akihiro@i.kyoto-u.ac.jp

Abstract. This paper gives a proof that the class of unbounded unions
of languages of regular patterns with constant segment length bound is in-
ferable from positive data with mind change bound between ωω and ωωω

.
We give a very tight bound on the mind change complexity based on the
length of the constant segments and the size of the alphabet of the pat-
tern languages. This is, to the authors’ knowledge, the first time a natu-
ral class of languages has been shown to be inferable with mind change
complexity above ωω. The proof uses the notion of closure operators on
a class of languages, and also uses the order type of well-partial-orderings
to obtain a mind change bound. The inference algorithm presented can be
easily applied to a wide range of classes of languages. Finally, we show an
interesting connection between proof theory and mind change complexity.

1 Introduction

Ordinal mind change complexity was proposed by Freivalds and Smith [8] as a
means of measuring the complexity of inferring classes of languages in the limit.
This notion was later used to show the complexity of inferring various classes of
pattern languages [1, 14], elementary formal systems [14], and various algebraic
structures [25], to name just a few results. In this paper, we give upper and lower
bounds on the mind change complexity of inferring unbounded unions of regular
pattern languages with a constant segment bound [23].

Jain and Sharma [14] have shown that the class formed by taking up to n
unions of pattern languages is inferable with optimal mind change complexity of
ωn. In this paper, we consider a subclass of pattern languages, L(RPl), which
are pattern languages formed from patterns that contain constant segments of
length at most l and in which each variable occurs in the pattern at most once.
The class L(RPl)ω, formed by taking any finite number of unions of languages
from L(RPl), was proved to be inferable from positive data by Shinohara and
Arimura [23]. The present paper proves that for any l ≥ 1 and any alphabet
Σ containing at least 3 elements, L(RPl)ω is inferable from positive data with

mind change bound ωω2l|Σ|−1
+ |Σ≤l|, and that it is not inferable with bound

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 124–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mind Change Complexity of Inferring Unbounded Unions 125

less than ωωl|Σ|−1−1
. This is the first time, to the authors’ knowledge, that a

mind change bound has been given to a class of unbounded unions of languages,
and the first time that a mind change bound has been shown to be greater than
ωω for a natural class of languages. The proof uses closure operators on classes
of languages and connections between mind change complexity and the order
type of well-partial-orderings. The results in this paper can be easily applied
to a wide range of learning problems, and give new insight into the role of
topological properties of language classes in inductive inference.

Furthermore, we show a connection between proof theory and mind change
complexity. Based on results by Simpson [24], we prove that within the weak
axiom system RCA0, the claim that L(RPl)ω is inferable from positive data by
a confident learner is equivalent to the claim that the ordinal ωωω

is well-ordered.
This means that the mind change complexity of a class of languages is related
to the logical strength of the claim that the class is inferable from positive data.
This holds interesting implications of connections between inductive inference
and proof theory.

The outline of this paper is as follows. In Section 2, we give preliminary defini-
tions and results concerning inductive inference from positive data, well-partial-
orders, unions of languages, mind change complexity, and pattern languages. In
Section 3, we introduce closure operators and show some of their properties.
In Section 4, we give tight upper and lower mind change bounds for inferring
L(RPl)ω from positive data. In Section 5, we show the connection between the
mind change complexity of L(RPl)ω and the logical strength of the assertion
that it is inferable from positive data by a confident learner. We discuss and
conclude in Section 6.

2 Preliminaries

In this paper we only consider indexed classes of recursive languages over some
finite alphabet Σ. We assume that for an indexed class of recursive languages
L, there is a recursive characteristic function f such that f(n, s) = 0 if s �∈ Ln

and f(n, s) = 1 if s ∈ Ln for all Ln ∈ L. For simplicity, we will often refer to L
as simply a class of languages. We use ⊆ to represent the subset relation, and ⊂
to represent the strict subset relation. Given an alphabet Σ, we use Σ<l, Σ≤l,
Σ=l, Σ∗, to denote the set of all strings of Σ of length less than l, less than or
equal to l, exactly equal to l, or of finite length, respectively.

2.1 Inductive Inference from Positive Data

We consider identification of languages in the limit as proposed by Gold [10]
(see also [13]). Let L be some recursive language over Σ∗. An infinite sequence
σ = s0, s1, s2, . . . such that L = {si | si ∈ σ} is called a positive presentation of
L. An inference machine M is an algorithm that incrementally receives elements
of a presentation of a language and occasionally outputs a positive integer rep-
resenting the index of a language. We say that the output of M converges to an

126 M. de Brecht and A. Yamamoto

integer j if M’s output is infinite and all but finitely many integers equal j, or if
M’s output is finite and the last integer equals j. If for any positive presentation
of a set L, the output of M converges to an integer j such that Lj = L, then we
say M infers L from positive data. If an inference algorithm M exists that infers
from positive data every L ∈ L, then we say L is inferable from positive data.

A finite tell-tale of L ∈ L is a finite set T such that T ⊆ L and for all L′ ∈ L,
T ⊆ L′ implies that L′ �⊂ L (Angluin [2]). A characteristic set of L ∈ L is
a finite set F such that F ⊆ L and for all L′ ∈ L such that F ⊆ L′ implies
that L ⊆ L′ (Kobayashi [17]). A class of sets L has infinite elasticity if and
only if there exists an infinite sequence of sets L1, L2, L3, . . . in L and elements
s0, s1, s2, . . . such that {s0, . . . , sn−1} ⊆ Ln but sn �∈ Ln. L has finite elasticity
if and only if it does not have infinite elasticity (Wright [26], Motoki et al. [19]).
L has finite thickness if and only if every element of Σ∗ is contained in at most
a finite number of languages of L (Angluin [2]).

Theorem 1 ((Angluin [2])). An indexed class of recursive sets L is infer-
able from positive data if and only if there exists a procedure to enumerate the
elements of the finite tell-tale of every L ∈ L.

Theorem 2 ((Kobayashi [17])). If every L ∈ L has a characteristic set, then
L is inferable from positive data.

Theorem 3 ((Wright [26])). If L has finite elasticity, then L is inferable from
positive data.

Theorem 4 ((Angluin [2])). If L has finite thickness, then L is inferable from
positive data.

Finite thickness implies finite elasticity which implies that every language has a
characteristic set which implies that a procedure exists that enumerates a finite
tell-tale for every language. However, the reverse implications do not hold in
general.

2.2 Well-Partial-Orders

Let 〈A,≤A〉 be a partial order. An anti-chain of A is a subset S ⊆ A of elements
that are mutually incomparable with respect to ≤A. That is, for all a, b ∈ S such
that a �= b, neither a ≤A b nor b ≤A a holds.

Lemma 5. Let ≤A and *A be two partial orders on A such that for a, b ∈ A,
a ≤A b implies that a *A b. If there are no infinite anti-chains in A with respect
to ≤A, then there are no infinite anti-chains in A with respect to *A.

Proof. Obviously, if a and b are incomparable with respect to *A then they are
incomparable with respect to ≤A, so any infinite anti-chain with respect to *A

is an infinite anti-chain with respect to ≤A. ��

Mind Change Complexity of Inferring Unbounded Unions 127

A is said to be well-partially-ordered if and only if A contains no infinitely de-
scending chains and no infinite anti-chains with respect to ≤A. A finite or infinite
sequence a0, a1, . . . of elements of A is said to be bad if for all i and j such that
i < j, ai �≤A aj . Note that A is well-partially ordered if and only if it does not
contain any infinite bad sequences. We will define Bad(A) to be the set of all
bad sequences of A.

Given a partial order 〈A,≤A〉, let A∗ be the set of finite ordered sequences of
elements of A. We will write s〈a〉 to represent the concatenation of an element
a ∈ A to the end of a sequence s ∈ A∗. A Higman embedding, 'H , is a partial
ordering on A∗ such that for a, b ∈ A∗, a 'H b if and only if a = 〈s0, . . . , sn〉 and
〈t0, . . . , tm〉 and there exists j0 < · · · < jn ≤ m such that s0 ≤A tj0 , . . . , sn ≤A

tjn . A subsequence relation, 'S , on A∗ is defined similarly, with the stronger
requirement that a 'S b if and only if there exists j0 < · · · < jn ≤ m such that
s0 = tj0 , . . . , sn = tjn .

Lemma 6 ((Higman [12]. See also [9])). If ≤A is a well-partial-ordering on
A, then 'H is a well-partial-ordering on A∗.

2.3 Unbounded Unions of Languages

Given two language classes L andM, define the union of L andM, L∪̃M, to be:

L∪̃M = {L ∪M |L ∈ L,M ∈M}.

Wright [26] showed that if L and M have finite elasticity, then L∪̃M has
finite elasticity, and is therefore inferable from positive data.

The concept of unions of language classes was expanded to unbounded unions
of languages by Shinohara and Arimura [23]. Given a class of languages L, define
the class of unbounded unions Lω to be the class of all finite unions of languages
of L. Formally, Lω is defined as:

Lω = {
⋃
i∈I

Li |Li ∈ L, I ⊂ N, 1 ≤ |I| <∞},

where N is the set of integers greater than or equal to zero. It can be shown
that if L has finite thickness and no infinite anti-chains with respect to subset
inclusion, then Lω is inferable from positive data [23].

2.4 Mind Change Complexity

Let α be a constructive ordinal number [16, 21]. An inference machine M infers
a class of languages L from positive data with mind change bound α if and only
if M infers L from positive data, and every time M outputs a new hypothesis
it counts down its ordinal without ever falling below zero. Ordinal mind change
complexity was originally proposed by Freivalds and Smith [8]. For more on
inductive inference with mind change bounds and results on the complexity of
certain languages classes, see [1, 14, 22, 25].

128 M. de Brecht and A. Yamamoto

We assume that ordinal addition and multiplication are commutative. Arith-
metic for ordinals with positive integer exponents can be thought of as being
similar to polynomials of the variable ω, however we consider ordinals with very
large exponents in this paper. For example, the ordinal ωω is the limit of the
sequence ω, ω2, ω3, . . ., and ωωω

is the limit of the sequence ωω, ωω2
, ωω3

, So
if an inference machine has the mind change counter set to ωω2

and makes a
mind change, it must decrease the counter to some α0ω

β0ω+γ0 +· · ·+αnω
βnω+γn ,

where n is finite and the αi, βi, and γi are all less than ω. Note that ω0 is defined
to be 1.

When defining a function from or to a set of ordinals, we will treat each ordinal
to be a set containing every strictly smaller ordinal. So f : ω → ω is a function
from natural numbers to natural numbers, and g : ω + 1→ ω is a function from
the set of natural numbers and the ordinal ω to the set of natural numbers.

2.5 Pattern Languages

We will mainly be concerned with the inference of pattern languages in this pa-
per, although the techniques used are easily applied to other classes of languages.
Pattern languages were originally introduced into inductive inference by Angluin
[2] and later became a rich field of research. See [23] for more on the inductive
inference of pattern languages and their applications. Let Σ be a finite alphabet
and let V = x0, x1, . . . be a countably infinite set of symbols disjoint from Σ. A
finite string of elements of Σ is called a constant segment and elements of V are
called variables. A pattern is a non-empty finite string over Σ ∪ V . A pattern
p is said to be regular if every variable xi appearing in p occurs only once. Let
RP be the set of regular patterns, and let RPl be the set of regular patterns
which contain constant segments of length no longer than l.

The language of a pattern p, denoted L(p), is the subset of Σ∗ that can
be obtained by substituting a non-empty constant segment si ∈ Σ+ for each
occurrence of the variable xi in p for all i ≥ 0. For example, if Σ = {a, b} and
p = ax1b, then L(p) is the subset of Σ∗ of strings beginning with “a”, ending
with “b”, and of length greater than or equal to three. For a set of patterns P ,
we define L(P) = {L(p) | p ∈ P}.

The next two theorems will be useful for showing the mind change complexity
of L(RPl)ω, the class of unbounded unions of languages of regular patterns with
constant segment length bound l.

Theorem 7 ((Shinohara and Arimura [23])). For any l ≥ 1, L(RPl) has
finite thickness and contains no infinite anti-chains with respect to set inclusion.

Theorem 8 ((Shinohara and Arimura [23])). For any l ≥ 1, L(RPl)ω is
inferable from positive data.

3 Closed Set Systems

We now introduce closure operators, which we will use later to define an inference
algorithm for L(RPl)ω.

Mind Change Complexity of Inferring Unbounded Unions 129

A mapping C : 2U → 2U is called a closure operator on U if and only if for
all subsets X and Y of U , C(·) has the following properties:

1. X ⊆ C(X),
2. C(C(X)) = C(X),
3. X ⊆ Y ⇒ C(X) ⊆ C(Y).

A closed set is a set X ⊆ U such that X = C(X). C = {X |X = C(X)} is
called the closed set system defined by C(·). It is easy to see that a collection
of sets is a closed set system for some closure operator if and only if it is closed
under arbitrary intersections. Closed set systems form a complete lattice ordered
by set inclusion, where

∧
i∈I C(Xi) =

⋂
i∈I C(Xi) and

∨
i∈I C(Xi) = C(

⋃
i∈I Xi)

[3, 5].
For any class of languagesL overΣ∗ and anyX ⊆ Σ∗, let CL(X) =

⋂
{L |X ⊆

L,L ∈ L}. It is easy to see that CL : 2Σ∗ → 2Σ∗
is a closure operator on Σ∗,

and that CL, the set of all closed sets of CL(·), is the smallest closed set system
that contains L [4]. Note that for all L ∈ L, L = CL(L), although not every
closed set is in L.

In the following, we will assume that L is an indexed family of recursive sets,
and that CL is the corresponding closed set system.

A closed set system is said to be Noetherian if and only if it contains no
infinite strictly ascending chains of closed sets.

Lemma 9. L has finite elasticity if and only if CL is Noetherian.

Proof. Assume an infinitely increasing chain of closed sets X0 ⊂ X1 ⊂ · · · exists
in CL. Let s0 be any element of X0, and for each i ≥ 0 choose si ∈ Xi+1 such
that si �∈ Xi. Then si �∈

⋂
{L |Xi ⊆ L,L ∈ L}, but si ∈

⋂
{L |Xi+1 ⊆ L,L ∈ L},

therefore there exists some L ∈ L such that Xi ⊆ L and si �∈ L. For all j ≥ i+1,
si ∈ Xj , so {s0, . . . , si−1} ⊆ Xi ⊆ L and si �∈ L. Since i was arbitrary, this shows
that L has infinite elasticity.

For the converse, assume that the languages L1, L2, L3, . . . and elements s0, s1,
s2, . . . show the infinite elasticity of L. From the definition of infinite elasticity,
{s0, . . . , sn−1} ⊆ C({s0, . . . , sn−1}) ⊆ Ln, but sn �∈ Ln so C({s0, . . . , sn−1})
⊂ C({s0, . . . , sn}). Since n was arbitrary, C({s0, . . . , si}) (i ≥ 0) is an infinite
strictly ascending chain, and thus CL is not Noetherian. ��

Lemma 10. Let L be a class of languages with finite thickness. L contains no
infinite anti-chains with respect to set inclusion if and only if CL contains no
infinite anti-chains.

Proof. From the definition of finite thickness, any set of elements is contained in
at most a finite number of languages of L. Therefore, there exists an irredundant
representation of any closed set Xi ∈ CL as the intersection of a finite number of
languages of L, so let Xi = Li

0 ∩ · · · ∩ Li
ni

. Define the ordering ≤′ over elements
of L such that Li

j ≤′ Li′
j′ if and only if Li

j ⊇ Li′
j′ . The finite thickness and absence

of anti-chains in L guarantee that ≤′ is a well-partial-order.

130 M. de Brecht and A. Yamamoto

Define a mapping f : CL → L∗ such that f(Xi) = 〈Li
0, . . . , L

i
ni
〉. We order L∗

by the Higman embedding 'H based on the ordering ≤′. Lemma 6 guarantees
that 'H is a well-partial-order on L∗, and therefore contains no infinite anti-
chains.

We now show that f(Xi) 'H f(Xj) implies that Xi ⊇ Xj . Assume that
f(Xi) 'H f(Xj), then there exists k0 < · · · < kni ≤ nj such that Li

0 ≤′

Lj
k0
, . . . , Li

ni
≤′ Lj

kni
. This implies that Li

0 ∩ · · · ∩ Li
ni
⊇ Lj

k0
∩ · · · ∩ Lj

kni
. Since

Lj
k0
∩ · · · ∩ Lj

kni
⊇ Lj

0 ∩ · · · ∩ Lj
nj

, it follows that Xi ⊇ Xj . From Lemma 5, it
follows that there are no infinite anti-chains in CL with respect to set inclusion.

The converse follows immediately since L is a subset of CL. ��

4 Upper and Lower Mind Change Bounds for L(RPl)ω

We now proceed to show the mind change complexity of inferring L(RPl)ω from
positive data. The results are largely based on the following two lemmas.

Lemma 11 ((Simpson [24])). Let A be a finite set containing exactly k ele-
ments. Then there exists a recursive mapping g : ωωk−1 → A∗ with the property
that α �≤ β implies g(α) �'S g(β).

Lemma 12 ((Simpson [24], Hasegawa [11])). Let A be a finite set contain-
ing exactly k elements. Then there exists a recursive mapping f : Bad(A∗) →
ωωk−1

+ 1 with the property that f(s〈a〉) < f(s) for all s, s〈a〉 ∈ Bad(A∗).

The mapping f in Lemma 12 is known as a reification. If A is a well-partially-
ordered set, and α is the smallest possible ordinal such that a (not necessarily
recursive) reification f : A→ α + 1 exists, then we say that A has order type α
(see [24, 11] for a more detailed discussion).

We will use Lemma 11 to find a lower bound of the mind change complexity
of L(RPl)ω and use Lemma 12 and closure operators to find an upper bound.

Let Σ be an alphabet containing at least three elements. Let Σ−c = Σ−{c},
where c is some element of Σ. We define x(RP′

=l)y to be the subset of RPl

of patterns that begin and end with a variable, do not contain any occurrences
of the constant element c, and only have constant segments of length exactly
equal to l. Note that although no p ∈ x(RP′

=l)y contains the element c, L(p) is
defined over Σ, so c may occur in some elements of the language L(p).

Next we define a mapping P : (Σ=l
−c)∗ → x(RP′

=l)y so that P (〈w1, . . . , wn〉) =
x1w1 · · ·xnwnxn+1. Let '′

S be the subsequence relation on (Σ=l
−c)

∗. The following
lemma is related to a theorem proved by Mukouchi [20].

Lemma 13. Let σ, τ1, . . . , τn ∈ (Σ=l
−c)

∗ for n ≥ 1. If for all i (1 ≤ i ≤ n),
τi �'′

S σ, then L(P (σ)) �⊆
⋃

1≤i≤n L(P (τi)).

Proof. Let σ = 〈w1, . . . , wm〉, and let s = cw1c · · · cwmc, where c is the constant
in Σ−Σ−c. Obviously s ∈ L(P (σ)). Assume s ∈

⋃
1≤i≤n L(P (τi)), then for some

j, s ∈ L(P (τj)). Assume τj = 〈u1, . . . , um′〉, so P (τj) = x1u1 · · ·xm′um′xm′+1.

Mind Change Complexity of Inferring Unbounded Unions 131

Each constant segment ui′ (1 ≤ i′ ≤ m′) in P (τj) must map to a segment in s,
but since ui′ does not contain c, ui′ must appear within some wki′ (1 ≤ ki′ ≤ m).
Since |ui′ | = |wki′ | = l, it follows that ui′ = wki′ . Furthermore, the ordering of
the mapping must be preserved, so ki′ < ki′+1 for i′ < m′. But this shows that
τj '′

S σ, which contradicts the hypothesis. ��
Since |Σ=l

−c| = l|Σ−c| = l|Σ|−1, we can use Lemma 11 to define a mapping g :

ωωl|Σ|−1−1 → (Σ=l
−c)

∗ with the property that α > β implies g(α) �'′
S g(β). We

now define g′ : ωωl|Σ|−1−1 → L(x(RP′
=l)y) to be g′(α) = L(P (g(α))). It follows

from Lemma 13 that if ωωl|Σ|−1−1
> α0 > · · · > αn > β for finite n, then

g′(β) �⊆
⋃

0≤i≤n g′(αi).

Theorem 14. L(RPl)ω is not inferable from positive data with mind change

bound less than ωωl|Σ|−1−1
for l ≥ 1 and for Σ containing at least 3 elements.

Proof. Let M be an inference machine with mind change counter initially set

at α0 < ωωl|Σ|−1−1
. Use the mapping g′ defined above to start enumerating

elements of the language L0 = g′(α0 + 1).
If M ever changes its hypothesis to include Ln, then its mind change counter

drops to some αn+1 < αn, and we start enumerating elements of Ln+1 = Ln ∪
g′(αn+1 + 1). Note that Ln+1 ⊃ Ln.

At some point, M must stop making mind changes, but since we are still enu-
merating the elements of some language Ln′ ∈ L(x(RP′

=l)y)ω that is different
from M’s hypothesis, we see that M fails to infer a language in L(RPl)ω. ��
We now move on to give an upper bound on the mind change complexity of
L(RPl)ω. Let L be a class of recursive languages, and let CL(X) =

⋂
{L |X ⊆

L,L ∈ L} be the corresponding closure operator. Given a finite subset X of some
unknown language L∗, any language L ∈ L that contains X also contains CL(X),
and CL(X) is the largest subset containing X that has this property. Therefore
we have the very natural interpretation that CL(X) is the most information
about L∗ that we can unambiguously extract from X . If X contains only the
single element s, then we will abbreviate CL(X) as CL(s). We can define a quasi-
ordering1 ≤L on Σ∗ such that s ≤L t if and only if t ∈ CL(s). If L has finite
thickness and no infinite anti-chains, then 〈Σ∗,≤L〉 is a well-quasi-order. If we
define an inference machine that only changes its hypothesis when it receives
elements of a bad sequence of 〈Σ∗,≤L〉 (i.e. if it sees an element that is not in
the closure of any of the elements it has already seen), then the order type of
〈Σ∗,≤L〉 will give an upper bound on the mind change complexity of L. We now
show how this is done for L(RPl)ω .

Let CRPl
(X) =

⋂
{L |X ⊆ L,L ∈ L(RPl)} for any subset X of Σ∗, and let

CRPl
be the set of all closed sets of CRPl

(·). From Theorem 7 and Lemmas 9
and 10, CRPl

is Noetherian and contains no infinite anti-chains with respect to
subset inclusion.
1 Quasi-orders are relations that are reflexive and transitive, but not necessarily anti-

symmetric. Well-quasi-orders are defined in the same way as well-partial-orders.

132 M. de Brecht and A. Yamamoto

Lemma 15. For any finite X ⊆ Σ∗ and s ∈ Σ+, the containment problem “is
s ∈ CRPl

(X)?” is computable.

Proof. If X is a subset of the language of a pattern p, then the length of p must
be less than the length of the shortest element in X . Only a finite number of
such p exist, so an algorithm can check whether or not s is in every pattern
language that contains X . ��

LetΣ be an alphabet containing at least three elements, and let # be a new symbol
not in Σ. Define Σ=l

to be the set of elements ofΣ=l with the symbol # appended
to the beginning or end. We define a mapping h : Σ>l → (Σ=l

)∗ such that for
s = a1 · · ·an (n > l), h(s) = 〈#a1 · · · al, a2 · · · al+1#, . . . ,#an−l+1 · · ·an〉, where
appears on the left side of the initial and final segments, and # appears on the
right of all other segments.

Lemma 16. If |s| ≤ l and s = t or if h(s) is a subsequence of h(t), then
t ∈ CRPl

({s}).

Proof. The case where s = t is obvious, so assume s = a1 · · · an, t = b1 · · · bn′ , and
that h(s) is a subsequence of h(t). It follows that each segment a′i = ai · · · ai+l−1
(1 ≤ i ≤ n − l + 1) in s is equal to some segment b′ji

= bji · · · bji+l−1 (1 ≤ ji ≤
n′ − l + 1) in t. Also, note that the placement of the # symbols guarantee that
a′1 = b′1 and a′n−l+1 = b′n′−l+1, meaning the first and last l elements of s and t
are the same.

Let p = w1x1 · · ·wmxmwm+1 be a pattern in RPl such that s ∈ L(p), where
the xi’s are variables and the wi’s are in Σ≤l. For each wi (1 ≤ i ≤ m + 1) in
p, wi is mapped to a segment in s, so let ki be the position in s where the first
element of wi is mapped. Note that ki+1 ≥ ki + |wi|+ 1 for i ≤ m.

If ki < n − l + 1, then wi maps to the prefix of a′ki
which is mapped to b′jki

,
so wi appears in t at position jki . Also, jki−1 < jki−1+1 < · · · < jki for i > 1,
and therefore jki ≥ jki−1 + |wi−1|+ 1, so there is at least one element between
the segments wi and wi−1 in t.

If ki < n− l + 1 and ki+1 ≥ n − l + 1, then jn−l+1 − jki ≥ (n − l + 1)− ki,
and since wi+1 is mapped to the same segment of the last l elements in s and t,
ki+1−(n−l+1) equals the difference between jn−l+1 = n′−l+1 and the position
of wi+1 in t. Therefore, wi and wi+1 are separated by at least one element in t.

If ki ≥ n − l + 1, then wi is mapped within the last l elements of s, which
are equal to t, so if i < m + 1 then wi and wi+1 are separated by at least one
element in t.

Therefore, each constant segment of p matches a segment in t, and are sepa-
rated by at least one element. Since the initial and final constant segments of p
and t also match, it is easily seen that t ∈ L(p). ��

Theorem 17. L(RPl)ω is inferable from positive data with mind change bound

ωω2l|Σ|−1
+ |Σ≤l| for any l ≥ 1 and Σ containing at least 3 elements.

Proof. The following algorithm receives a positive presentation of an unknown
languageL∗ ∈ L(RPl)ω and outputs hypotheses of the formH = {w0, . . . , wk} ⊆

Mind Change Complexity of Inferring Unbounded Unions 133

Σ+ such that L(H), the language corresponding to the hypothesis H , is defined
as CRPl

(w0) ∪ · · · ∪ CRPl
(wk).

Set counter = ωω2l|Σ|−1
+|Σ≤l| and initialize the set H = ∅. Initialize the ordered

list B to be empty. Let sn ∈ Σ+ be the nth input, and assume H = {w0, . . . , wm}.

1. If sn ∈ CRPl
(wi) for some wi ∈ H , then do nothing and proceed to read in

the next input.
2. If there is any wi ∈ H such that wi ∈ CRPl

(sn) and sn �∈ CRPl
(wi) (i.e.

CRPl
(wi) ⊂ CRPl

(sn)), replace the wi in H with sn. For every other wj ∈ H
(j �= i) such that wj ∈ CRPl

(sn), remove wj from H . Update counter and
output the new hypothesis H . Read in the next input.

3. Otherwise, CRPl
(sn) is incomparable with every CRPl

(wi) (wi ∈ H), so
redefine H to be H ∪ {si}, update counter, and output the new hypothesis
H . Read in the next input.

In cases 2 and 3, counter is updated in the following way. If |sn| ≤ l then
reduce what remains of the |Σ≤l| portion of counter by one. Otherwise, redefine
B to be B〈h(sn)〉, where h : Σ>l → (Σ=l

)∗ is the mapping defined above. Since
elements are added to B only when they have length longer than l and are
not included in the closure of any of the previous elements, Lemma 16 shows
that B is a bad sequence of elements of (Σ=l

)∗. We can then use the mapping

f : Bad((Σ=l
)∗)→ ωω2l|Σ|−1

+ 1 based on Lemma 12 to set what remains of the

ωω2l|Σ|−1
portion of counter to f(B).

Every time H changes, either an element of H is replaced with one that
generates a strictly larger closed set, or else a new incomparable closed set is
found. Therefore, since CRPl

is Noetherian and contains no infinite anti-chains,
H changes only a finite number of times. Assume that the algorithm converges to
some H ′. Any pattern language that contains wi ∈ H ′ will contain CRPl

(wi), so
L(H ′) ⊆ L∗. If there is any element s ∈ L∗ that is not in L(H ′), then eventually
s will appear in the presentation, and since s �∈ CRPl

(wi) for all wi ∈ H ′, the
hypothesis will be updated, contradicting the choice of H ′. Therefore L(H ′) =
L∗, and so the above algorithm infers L(RPl)ω from positive data.

Since there are only |Σ≤l| − 1 (empty string not included) elements of length
less than or equal to l, the |Σ≤l| portion of counter will not be reduced below
zero. All other elements that induce a mind change can be mapped to a part

of a bad sequence of (Σ=l
)∗, so Lemma 12 ensures that the ωω2l|Σ|−1

portion of
counter decreases after every mind change but does not fall below zero. Therefore

the algorithm infers L(RPl)ω with mind change bound ωω2l|Σ|−1
+ |Σ≤l|. ��

5 Mind Change Bounds and Reverse Mathematics

Reverse Mathematics is a field of research dedicated to finding which axioms
are necessary and sufficient to prove theorems in second order arithmetic. In

134 M. de Brecht and A. Yamamoto

general, the base axiom system RCA0 is used to compare the logical strength of
different axioms. RCA0 is a weak system that basically only asserts the existence
of recursive sets, a weak form of induction, and the basic axioms of arithmetic.
WKA0 (Weak König’s Lemma) is a slightly stronger system which is defined to
be RCA0 with an additional axiom asserting König’s Lemma for binary trees.
ACA0 (Arithmetical Comprehension Axiom) is stronger than WKA0, and is a
conservative extension of Peano Arithmetic. See [7] for further discussion on
these systems and their relation to various theorems in countable algebra.

The basic idea is that if we have two theorems, Theorem A and Theorem B,
and we can show that by assuming Theorem A as an axiom along with the axioms
of RCA0 then we can prove Theorem B, and conversely by assuming Theorem
B as an axiom we can prove Theorem A, then we can say that Theorem A and
Theorem B are equivalent within RCA0. This kind of reasoning is similar to
the equivalence of Zorn’s Lemma and the Axiom of Choice within the Zermelo-
Fraenkel axiom system.

The purpose of this section is to show the relationship within RCA0 of as-
serting the inferability of certain classes of languages with asserting the well-
orderedness2 of certain ordinal numbers. The result is important because it shows
some connections between proof theory and the theory of inductive inference.

Proposition 18 ((Simpson [24])). ωωω

cannot be proved to be well-ordered
within RCA0. However, RCA0 does prove that ωωω

is well-ordered if and only if
ωωm

is well-ordered for all m.

The next theorem follows directly from Theorems 14 and 17, and the work of
Simpson [24]. Simpson showed that the Hilbert basis theorem is equivalent to
the well-orderedness of ωω, and that Robson’s generalization of the Hilbert basis
theorem is equivalent to the well-orderedness of ωωω

.
An inference machine is said to be confident if it only makes a finite number of

mind changes on any presentation of a language, even if the language is not one
that the inference machine infers in the limit. The next theorem basically shows
that the logical strength of asserting the inferability of L(RPl)ω by a confident
learner is related to the mind change complexity of L(RPl)ω .

Theorem 19. The following are equivalent within RCA0:

1. ωωω

is well-ordered.
2. L(RPl)ω is inferable from positive data by a confident learner for any l ≥ 1

and any Σ containing at least three elements.

Proof. First, we note that the mappings in Lemmas 11 and 12 are defined within
RCA0 [24], and since we only consider computable inference machines in Theo-
rems 14 and 17, they are also definable in RCA0.

To show that 1 implies 2, fix m > 2 and assume that ωωm−1
is well-ordered.

Assume that there is some l and Σ such that 2l|Σ| < m and that L(RPl)ω is
2 Recall that a totally ordered set A is well-ordered if and only if there is no infinitely

decreasing sequence of elements in A.

Mind Change Complexity of Inferring Unbounded Unions 135

not inferable from positive data. Since the algorithm in Theorem 17 will always
expand its hypothesis to include new elements not already accounted for, and
since it will never output an overgeneralized hypothesis, the only way L(RPl)ω

would not be inferable is if the inference machine never converges. Therefore
the mind change counter of the machine gives an infinitely descending chain
of ordinals less than ωωm−1

, which contradicts the assumption that ωωm−1
is

well-ordered.
To show that 2 implies 1, fix l ≥ 1 and Σ to contain at least three elements, and

assume that L(RPl)ω is inferable from positive data. If ωωm−1
is not well-ordered

for some m < l|Σ|−1, then we can use the same technique as in Theorem 14 to
convert an infinitely descending sequence in ωωm−1

to an infinitely increasing
(with respect to ⊂) sequence of languages in L(RPl)ω. Therefore we can show
that any inference machine either fails to infer some language in L(RPl)ω , or
else it makes an infinite number of mind changes on some text, in either case a
contradiction. ��

This result can be applied to most proofs involving mind change complexity. For
example, Stephan and Ventsov [25] showed that ideals of the ring of polynomials
with n variables is inferable with optimal mind change bound ωn. This result
can easily be converted into another proof that the Hilbert basis theorem is
equivalent to the well-orderedness of ωω.

6 Discussion and Conclusion

This paper contains several new results. First, we introduced closure operators on
arbitrary language classes, which can be interpreted as representing the amount
of information contained in a subset of an unknown language. We also showed
that the minimal closed set system containing a class of languages preserves
several topological properties of the class. We showed how closure operators can
be used to define an ordering on Σ∗, and how the order type of this ordering
is related to mind change complexity. We also give an inference algorithm that
can easily be applied to the inductive inference of a wide variety of classes of
languages provided that the closure operation is computable. As a practical
application, we used these techniques to show that L(RPl)ω is inferable from

positive data with mind change bound ωω2l|Σ|−1
+ |Σ≤l|, and that it is not

inferable with mind change bound less than ωωl|Σ|−1−1
. Finally, we showed an

interesting connection between proof theory and mind change complexity.
Our approach of applying well-partial-orderings to mind change complexity

seems to be related to the work in [18] which uses point-set topology to show the
relationship between accumulation order and mind change complexity. A gener-
alization of ordinal mind change complexity, as proposed in [22], considers using
recursive partially ordered sets as mind change counters. This notion is similar
to the role well-partial-orderings play in mind change complexity in our paper.
Since we use ordinal mind change complexity, our results would be considered

136 M. de Brecht and A. Yamamoto

as a Type 2 mind change bound, although our methods may give insight into
the differences between the mind change bound types.

A simple modification of the inference algorithm in Theorem 17 will work for
inferring any class of languages L if every language in L has a characteristic set
and if the closure operator CL(·) of CL is computable for finite sets. In this case
we would only keep one closed set CL(X), where X is a subset of the presentation
seen so far, and only add an element s to X if s �∈ CL(X). If a language in L has
a characteristic set then it can be shown that it is a finitely generated closed set
in CL, so we can be sure that CL(X) does not grow without bound. Also it is
clear that CL(X) will converge to the unknown language. However, we will not
be guaranteed a mind change bound in this case.

Note that if a class of languages L contains a language L that has a finite
tell-tale but no characteristic set, then L within CL will equal the union of an
infinitely increasing chain of closed sets. Therefore, the algorithm in Theorem
17 will not converge. This shows a fundamental difference in inferring languages
that only have finite tell-tales, because the inference machine will be forced to
choose a hypothesis from a set of incomparable languages that are all minimal
with respect to the current presentation.

One should also notice the similarities between the algorithm in Theorem 17
with Buchberger’s algorithm to compute the Groebner basis of an ideal of a
polynomial ring [6]. In Buchberger’s algorithm, polynomial division is used to
check if a polynomial is in the closure of the current basis, and then expand the
basis to include the polynomial if it is not. Since much research has gone into
finding efficient versions of Buchberger’s algorithm, some of those results may
be useful for creating more efficient inference algorithms.

Theorem 19 uses Reverse Mathematics to show that the mind change complex-
ity of a class of languages gives a concrete upper bound to the logical strength
of the claim that the class is inferable from positive data. Ambainis et al. [1]
have already shown that a confident learner that infers a class L from positive
data can do so with some mind change bound α for some constructive ordinal
notation, and Stephan and Ventsov [25] pointed out that the converse holds.
However, the result in Theorem 19 shows that the two notions are actually log-
ically equivalent with respect to the weak base system RCA0. It can be shown
that the smallest ordinal that cannot be proven well-ordered in the three systems
mentioned previously is ωω for RCA0 and WKL0, and ε0 for ACA0. Therefore,
we conjecture that if a class of languages L can be shown within WKL0 to be
confidently learnable, then the class should not have an optimal mind change
bound greater than ωω. Furthermore, ACA0 would not be sufficient to prove
that a class of languages has optimal mind change bound greater than ε0.

Therefore, classes of languages with increasingly large mind change bounds
will require increasingly strong axiom systems to prove them confidently infer-
able. This is apparent in the case of L(RPl)ω, since it relies heavily on Higman’s
lemma, but is also seen in Wright’s theorem, which is used to prove the inferabil-
ity of finite unions of pattern languages, and relies on a weak form of Ramsey’s
theorem.

Mind Change Complexity of Inferring Unbounded Unions 137

It may be possible to extend these proof theoretical results even further by
using reductions between language classes [15], although care must be taken on
the complexity of the proof of the reduction.

Some classes of languages, such as FIN , the class of all finite sets of natural
numbers, are not inferable with a mind change bound [1], and yet the inference
algorithm is trivial, simply output the finite sequence seen so far. Although the
inference algorithm for FIN is simple, and it is trivial to prove its success, FIN
is often considered a difficult learning problem because mind changes cannot
be bounded. This suggests that it is necessary to further clarify the differences
between the complexity of inference algorithms and the complexity of the proof
of inferability.

Acknowledgements

We would like to thank Professor Hiroki Arimura and the anonymous reviewers
for their helpful comments.

References

1. A. Ambainis, S. Jain, A. Sharma: Ordinal Mind Change Complexity of Language
Identification. Theoretical Computer Science 220 (1999) 323–343.

2. D. Angluin: Inductive Inference of Formal Languages from Positive Data. Informa-
tion and Control 45 (1980) 117–135.

3. G. Birkhoff: Lattice Theory, Third Edition. American Mathematical Society (1967).
4. D. J. Brown, R. Suszko: Abstract Logics. Dissertationes Mathematicae 102 (1973)

9–41.
5. S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag

(1981).
6. D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms, Second Edition.

Springer-Verlag (1996).
7. H. Friedman, S. G. Simpson, R. L. Smith: Countable Algebra and Set Existence

Axioms. Annals of Pure and Applied Logic 25 (1983) 141–181.
8. R. Freivalds, C. H. Smith: On the Role of Procrastination for Machine Learning.

Information and Computation 107 (1993) 237–271.
9. J. H. Gallier: What’s So Special About Kruskal’s Theorem and the Ordinal Γ0?

A survey of some results in proof theory. Annals of Pure and Applied Logic 53
(1991) 199–260.

10. E. M. Gold: Language Identification in the Limit. Information and Control 10
(1967) 447–474.

11. R. Hasegawa: Well-ordering of Algebras and Kruskal’s Theorem. Logic, Language
and Computation, Lecture Notes in Computer Science 792 (1994) 133–172.

12. G. Higman: Ordering by Divisibility in Abstract Algebras. Proceedings of the Lon-
don Mathematical Society, Third Series 2 (1952) 326–336.

13. S. Jain, D. Osherson, J. S. Royer, A. Sharma: Systems That Learn, Second Edition.
MIT Press (1999).

14. S. Jain, A. Sharma: Elementary Formal Systems, Intrinsic Complexity, and Pro-
crastination. Proceedings of COLT ‘96 (1996) 181–192.

138 M. de Brecht and A. Yamamoto

15. S. Jain, A. Sharma: The Structure of Intrinsic Complexity of Learning. Journal of
Symbolic Logic 62 (1997) 1187–1201.

16. S. C. Kleene: Notations for Ordinal Numbers. Journal of Symbolic Logic 3 (1938)
150–155.

17. S. Kobayashi: Approximate Identification, Finite Elasticity and Lattice Structure
of Hypothesis Space. Technical Report, CSIM 96-04, Dept. of Compt. Sci. and
Inform. Math., Univ. of Electro- Communications (1996).

18. W. Luo, O. Schulte: Mind Change Efficient Learning. Proceedings of COLT 2005
(2005) 398–412.

19. T. Motoki, T. Shinohara, and K. Wright: The Correct Definition of Finite Elastic-
ity: Corrigendum to Identification of Unions. Proceedings of COLT ‘91 375 (1991).

20. Y. Mukouchi: Containment Problems for Pattern Languages. IEICE Trans. Inform.
Systems E75-D (1992) 420–425.

21. G. E. Sacks: Higher Recursion Theory. Springer-Verlag (1990).
22. A. Sharma, F. Stephan, Y. Ventsov: Generalized Notions of Mind Change Com-

plexity. Information and Computation 189 (2004) 235–262.
23. T. Shinohara, H. Arimura: Inductive Inference of Unbounded Unions of Pattern

Languages From Positive Data. Theoretical Computer Science 241 (2000) 191–209.
24. S. G. Simpson: Ordinal Numbers and the Hilbert Basis Theorem. Journal of Sym-

bolic Logic 53 (1988) 961–974.
25. F. Stephan, Y. Ventsov: Learning Algebraic Structures from Text. Theoretical

Computer Science 268 (2001) 221–273.
26. K. Wright: Identification of Unions of Languages Drawn from an Identifiable Class.

Proc. 2nd Workshop on Computational Learning Theory (1989) 328–333.

Learning and Extending Sublanguages

Sanjay Jain1,� and Efim Kinber2

1 School of Computing, National University of Singapore, Singapore 117543
sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A.

kinbere@sacredheart.edu

Abstract. A number of natural models for learning in the limit is intro-
duced to deal with the situation when a learner is required to provide a
grammar covering the input even if only a part of the target language is
available. Examples of language families are exhibited that are learnable
in one model and not learnable in another one. Some characterizations
for learnability of algorithmically enumerable families of languages for
the models in question are obtained. Since learnability of any part of the
target language does not imply monotonicity of the learning process, we
consider also our models under additional monotonicity constraint.

1 Introduction

Models of algorithmic learning in the limit have been used for quite a while for
study of learning potentially infinite languages. In the widely used mathemati-
cal paradigm of learning in the limit, as suggested by Gold in his seminal arti-
cle [Gol67], the learner eventually gets all positive examples of the language in
question, and the sequence of its conjectures converges in the limit to a correct
description. However, in Gold’s original model, the learner is not required to pro-
duce any reasonable description for partial data — whereas real learning process
of languages by humans is rather a sort of incremental process: the learner first
actually finds grammatical forms — in the beginning, probably, quite primitive —
that describe partial data, and refines conjectures when more data becomes avail-
able. Moreover, if some data never becomes available, a successful learner still can
eventually come up with a feasible useful description of the part of the language
it has learned so far. This situation can be well understood by those who have
been exposed to a foreign language for a long time, but then stopped learning it.
For example, English has many common grammatical forms with Russian, which
makes them relatively easy to learn. However, the system of tenses in English is
much more complex than in Russian, and remains a tough nut to crack for many
adult Russians who mustered English otherwise relatively well. Similar argument
can be made for many other situations when even partial descriptions based on
partial input data might be important: diagnosing the complete health status of a

� Supported in part by NUS grant number R252-000-127-112.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 139–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 S. Jain and E. Kinber

patient versus detecting only some of his/her deficiences, forecasting weather for
a whole region, or just for some small towns, etc.

In this paper, we introduce several variants of the Gold’s model for learning
languages in the limit requiring the learner to converge to a reasonable descrip-
tion for just a sublanguage if the data from this sublanguage only is available (this
approach to learning recursive functions in the limit was studied in [JKW04]).
In particular, we consider

(1) a model, where, for any input representing a part P of a language L from
the learnable class L, the learner converges to a grammar describing a part of L
containing P ;

(2) a model, where for any input representing a part P of some language
L in the learnable class L, the learner converges to a grammar describing a
part (containing P) of some (maybe other) language L′ in L. The reason for
considering this model is that the first model maybe viewed as too restrictive —
partial data P seen by the learner can belong to several different languages, and
in such a case, the learner, following the model (1), must produce a grammar
describing a part P and being a part of ALL languages in L which contain P ;

(3) a model, similar to the above, but the language L′ containing the part P
of a language on the input is required to be a minimal language in the class L
which contains P .

For all three models, we also consider the variant where the final conjecture
itself is required to be a grammar describing a language in the class L (rather
than being a subset of such a language, as in the original models (1) — (3)).
(A slightly different variants of the models (1) and (3), with a slightly different
motivation, and in somewhat different forms, were introduced in [Muk94] and
[KY95]).

We also consider a weaker variant of all the above models: for a learner to be
able to learn just a part of the language, the part must be infinite (sometimes,
we may be interested in learning just potentially infinite languages – in this case,
correct learning of just a finite fragment of a target language may be inessential).

We compare all these models, examining when one model has advantages
over the other. This gives us opportunity to build some interesting examples
of learnable families of languages, for which learnability of a part is possible in
one sense, but not possible in the other. We also look at how requirement of
being able to learn all (or just infinite) parts fairs against other known models
of learnability — in particular, the one that requires the learner to be consistent
with the input seen so far. We obtain some characterizations for learnability
within our models when the final conjecture is required to be a member of the
learnable class of languages.

Some of our examples separating one model from another use the fact that,
while in general learning increasing parts of an input language can be perceived
as incremental process, actual learning strategies can, in fact, be nonmonotonic
— each next conjecture is not required to contain every data item covered by the
prior conjecture. Consequently, we also consider how our models of learnability
fair in the context where monotonicity is explicitly required.

Learning and Extending Sublanguages 141

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67].N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}. ∅ denotes the empty set. ⊆,⊂, ⊇,⊃ respectively
denote subset, proper subset, superset and proper superset. Dx denotes the finite
set with canonical index x [Rog67]. We sometimes identify finite sets with their
canonical indices. The quantifier ‘∀∞’ means ‘for all but finitely many’.
↑ denotes undefined. max(·),min(·) denotes the maximum and minimum of a

set, respectively, where max(∅) = 0 and min(∅) =↑. 〈·, ·〉 stands for an arbitrary,
computable, one-to-one encoding of all pairs of natural numbers onto N [Rog67].
Similarly we can define 〈·, . . . , ·〉 for encoding tuples of natural numbers onto
N . πn

k denotes the k-th projection for the pairing function for n-tuples, i.e.,
πn

k (〈x1, . . . , xn〉) = xk.
ϕi denotes the partial computable function computed by program i in a fixed

acceptable programming system ϕ (see [Rog67]). Wi denotes domain(ϕi). Wi is,
then, the recursively enumerable (r.e.) set/language (⊆ N) accepted (or equiva-
lently, generated) by the ϕ-program i. E will denote the set of all r.e. languages.
L, with or without subscripts and superscripts, ranges over E . L, with or without
subscripts and superscripts, ranges over subsets of E .

A class L = {L0, L1, . . .} is said to be an indexed family [Ang80b] of recursive
languages (with indexing L0, L1, . . .), iff there exists a recursive function f such
that f(i, x) = 1 iff x ∈ Li. When learning indexed families L, we often consider
hypothesis space being L itself. In such cases, L-grammar i is a grammar for Li.

We now consider some basic notions in language learning. We first introduce
the concept of data that is presented to a learner. A text T is a mapping from N
into (N ∪{#}) (see [Gol67]). The content of a text T , denoted content(T), is the
set of natural numbers in the range of T . T is a text for L iff content(T) = L.
T [n] denotes the initial segment of T of length n. We let T , with or without
superscripts, range over texts. Intuitively, #’s in the texts denote pauses in the
presentation of data. For example, the only text for the empty language is just
an infinite sequence of #’s.

A finite sequence σ is an initial segment of a text. content(σ) is the set of
natural numbers in the range of σ. |σ| denotes the length of σ, and if n ≤ |σ|, then
σ[n] denotes the initial segment of σ of length n. στ denotes the concatenation
of σ and τ .

A language learning machine is an algorithmic device which computes a map-
ping from finite initial segments of texts into N ∪{?}. (Here ? intuitively denotes
the fact that M does not wish to output a conjecture on a particular input). We
let M, with or without subscripts and superscripts, range over learning machines.
We say that M(T)↓ = i ⇔ (∀∞n)[M(T [n]) = i].

We now introduce criteria for a learning machine to be considered successful
on languages. Our first criterion is based on learner, given a text for the language,
converging to a grammar for the language.

Definition 1. [Gol67] (a) M TxtEx-identifies L (written: L ∈ TxtEx(M)) ⇔
(∀ texts T for L)(∃i |Wi = L)[M(T)↓ = i].

142 S. Jain and E. Kinber

(b) M TxtEx-identifies L, if it TxtEx-identifies each L ∈ L.
(c) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)]}.

The influence of Gold’s paradigm [Gol67] to analyze human language learning
is discussed by various authors, for example [OSW86].

Note that the hypothesis space used for interpreting the conjectures of the
learner in the above definition is the acceptable numbering W0,W1, In some
cases we use special hypothesis spaces (for example when learning indexed fami-
lies, we often use the class L itself as hypothesis space). We will make it explicit
when we use such an hypothesis space.

Gold [Gol67] also considered the case when the learner is required to learn a
language without making any mind changes.

Definition 2. [Gol67] (a) M Fin-identifies L (written: L ∈ Fin(M)) ⇔ (∀
texts T for L)(∃i |Wi = L)(∃n)[M(T [n]) = i ∧ (∀m < n)[M(T [m]) =?]].

(b) M Fin-identifies L, if it Fin-identifies each L ∈ L.
(c) Fin = {L | (∃M)[L ⊆ Fin(M)]}.

The following definition is based on a learner semantically rather than syntacti-
cally converging to a grammar (or grammars) for an input language. Here note
that equivalence of grammars is non-computable. The corresponding notion for
learning functions was introduced by [Bār74b, CS83].

Definition 3. [CL82, OW82a].
(a) M TxtBc-identifies L (written: L ∈ TxtBc(M)) ⇔ (∀ texts T for

L)(∀∞n)[WM(T [n]) = L].
(b) M TxtBc-identifies L, if it TxtBc-identifies each L ∈ L.
(c) TxtBc = {L | (∃M)[L ⊆ TxtBc(M)]}.

It can be shown that TxtEx ⊂ TxtBc (for example, see [CL82, OW82a]).
The following concept is useful for proving some of our results.

Definition 4.
(a) [Ful85] σ is a TxtEx-stabilizing sequence for M on L just in case content(σ) ⊆
L and (∀τ | content(τ) ⊆ L ∧ σ ⊆ τ)[M(τ) = M(σ)].
(b) [BB75, OW82b] σ is a TxtEx-locking sequence for M on L just in case σ is
a TxtEx-stabilizing sequence for M on L and WM(σ) = L.

Lemma 1. [BB75] If M TxtEx-identifies L, then there exists a TxtEx-locking
sequence for M on L. Furthermore, all stabilizing sequences of M on L are
locking sequences for M on L.

Similarly one can define a TxtBc-stabilizing sequence and a TxtBc-locking
sequence for M on L. A lemma similar to Lemma 1 can be established for
TxtBc-learning as well as other criteria of inference considered below. We often
drop TxtEx- (TxtBc-, etc.) from TxtEx-(TxtBc-, etc.)-stabilizing sequence,
when it is clear from context.

Definition 5. [Bār74a, Ang80b] (a) M is consistent on σ iff content(σ) ⊆
WM(σ).

Learning and Extending Sublanguages 143

(b) M is consistent on L iff it is consistent on all σ such that content(σ) ⊆ L.
(c) M Cons-identifies L iff it is consistent on each L ∈ L and M TxtEx-

identifies L.
Cons = {L | some M Cons-identifies L}.

3 Learning Sublanguages: Definitions and Separations

Below we define our three models for learning sublanguages, as explained in
the Introduction, as well as their variants reflecting the requirement of the final
correct conjecture describing a language in the learnable class. We give our
definitions for the Ex and Bc paradigms of learnability in the limit.

Intuitively, we vary three parameters in our learning criteria (in addition to
the base criterion such as Ex or Bc): (a) whether we want the extensions to be
subsets of every language in the class of which the input is a subset (denoted
by Sub in the name of the criterion), or of a minimal language in the class of
which the input is a subset (denoted by MWSub in the name of the criterion),
or only one of the languages in the class of which the input is a subset (denoted
by WSub in the name of the criterion), (b) whether all sublanguages are to be
extended (denoted by All in the name of the criterion), or only the infinite ones
(denoted by Inf in the name of the criterion), and (c) whether we require the
final hypothesis extending the input to be within the class or not (denoted by
presence or absence of Res in the name of the criterion).

A language L ∈ L is said to be a minimal language [Muk94] containing S in
L, iff S ⊆ L, and no L′ ∈ L satisfies S ⊆ L′ ⊂ L.

Below, Sub denotes learning subsets, WSub, denotes weak learning of sub-
sets, and MWSub denotes minimal weak learning of subsets. We first consider
extending all subsets.

Definition 6. (a) M AllSubEx-identifiesL, iff for allL ∈ L, for all texts T such
that content(T) ⊆ L, M(T) converges to a grammar i such that content(T) ⊆
Wi ⊆ L.

(b) M AllWSubEx-identifies L, iff M TxtEx-identifies L and for all L ∈ L,
for all texts T such that content(T) ⊆ L, M(T) converges to a grammar i such
that content(T) ⊆Wi ⊆ L′, for some L′ ∈ L.

(c) M AllMWSubEx-identifies L, iff for all L ∈ L, for all texts T such that
content(T) ⊆ L,M(T) converges to a grammar i such that content(T) ⊆Wi ⊆ L′,
for some L′ ∈ L, such that L′ is a minimal language containing content(T) in L.

(d) For I ∈ {AllSubEx,AllWSubEx,AllMWSubEx}, we say that MResI-
identifies L, iff M I-identifies L, and for all L ∈ L, for all texts T such that
content(T) ⊆ L, WM(T) ∈ L.

As for the latter part of the above definition, it must be noted that Mukouchi
[Muk94] considered a variation of ResAllMWSubEx for indexed families and
provided some sufficient conditions for learnability in the model. Essentially
his model allowed a learner to diverge if the input language did not have any
minimal extension in L. Kobayashi and Yokomori [KY95] considered a variation

144 S. Jain and E. Kinber

of ResAllSubEx learning (and briefly also ResAllMWSubEx learning) for
indexed families of recursive languages and provided some characterizations.
Essentially, they required a learner to learn on all inputs, even those which may
not be contained in any language in the class (in other words, they required N
to be a member of the class). Mukouchi and Kobayashi and Yokomori arrived at
their definitions via a slightly different motivation (to find minimal extensions
within the class), and, thus, had definitions somewhat different from ours. Here
note that Kobayashi and Yokomori’s techinque also gives that the class of pattern
languages [Ang80a] belongs to AllSubEx.

Note also that learning from incomplete texts (with just finite amount of data
missing) was studied in the context, where the final grammar still was required
to be a correct (or nearly correct) description of the full target language (see, for
example, [OSW86, FJ96]). This is incomparable with our approach, in general.

In part (b) of the above definition, we explicitly added TxtEx-identifiability
as the rest of the definition in part (b) does not imply TxtEx-identifiability
(for parts (a) and (c), this was not needed, as the conditions imply TxtEx-
identifiability).

Definition 7. (a) M AllSubBc-identifies L, iff for all L ∈ L, for all texts T
such that content(T) ⊆ L, for all but finitely many n, content(T) ⊆WM(T [n]) ⊆
L.

(b) M AllWSubBc-identifies L, iff M TxtBc-identifies L and for all L ∈ L,
for all texts T such that content(T) ⊆ L, for all but finitely many n, for some
L′ ∈ L, content(T) ⊆WM(T [n]) ⊆ L′.

(c) M AllMWSubBc-identifies L, iff for all L ∈ L, for all texts T such that
content(T) ⊆ L, for all but finitely many n, for some L′ ∈ L such that L′ is a
minimal superset of content(T) in L, content(T) ⊆WM(T [n]) ⊆ L′.

(d) For I ∈ {AllSubBc,AllWSubBc,AllMWSubBc}, we say that M
ResI-identifies L, iff M I-identifies L, and for all L ∈ L, for all texts T such
that content(T) ⊆ L, for all but finitely many n, WM(T [n]) ∈ L.

In the above definitions, when we only require extending infinite subsets, then
we replace All by Inf in the name of the criterion (for example, InfSubEx).

Our first proposition establishes a number of simple relationships between our
different models that easily follow from the definitions. In particular, we formally
establish that our model (1) is more restrictive than model (3), and model (3) is
more restrictive than model (2) (we refer here, and in the sequel, to the models
described in the Introduction).

Proposition 1. Suppose I ∈ {All, Inf}, J ∈ {Sub,WSub,MWSub}, K ∈
{Ex,Bc}.

(a) ResIJK ⊆ IJK.
(b) AllJK ⊆ InfJK.
(c) ISubK ⊆ IMWSubK ⊆ IWSubK.
(d) IJEx ⊆ IJBc.
(b), (c), (d) above hold for Res versions too.

Learning and Extending Sublanguages 145

Results below would show that above inclusions are proper. They give the advan-
tages of having a weaker restriction, such as final conjecture not being required
to be within the class (Theorem 1), WSub vs MWSub vs Sub (Theorems 3
and 2) and Inf vs All (Theorem 4).

First we show that the requirement of the last correct conjecture(s) being a
member of the learnable class makes a difference for the sublanguage learners:
there are classes of languages learnable in our most restrictive model, AllSubEx,
and not learnable in the least restrictive model ResInfWSubBc satisfying this
requirement.

Theorem 1. AllSubEx−ResInfWSubBc �= ∅.

Proof. Let Lf = {〈x, f(x)〉 | x ∈ N}. Let L = {Lf | f ∈ R ∧ card(range(f)) <
∞ ∧ (∀e ∈ range(f))[We = f−1(e)]}. It is easy to verify that L ∈ AllSubEx.
However L is not in ResInfWSubBc (proof of Theorem 23 in [JKW04] can be
easily adapted to show this).

On the other hand, an AllMWSubEx-learner, even satisfying Res variant of
sublanguage learnability, can sometimes do more than any SubBc-learner even
if just learnability of only infinite sublanguages is required.

Theorem 2. ResAllMWSubEx− InfSubBc �= ∅.

Proof. Let Y = {〈1, x〉 | x ∈ N}. Let Ze = {〈1, x〉 | x ≤ e} ∪ {〈1, 2x〉 | x ∈
N} ∪ {〈0, 0〉}. Let L = {Y } ∪ {Ze | e > 0}.

Note that Y is not contained in any other language in the class, nor contains
any other language of the class.
L ∈ ResAllMWSubEx as on input σ, a learner can output as follows. If

content(σ) ⊆ Y , then output a (standard) grammar for Y . If content(σ) contains
just 〈0, 0〉, then output a standard grammar for {〈0, 0〉}. Otherwise output Ze,
where e is the maximum odd number such that 〈1, e〉 ∈ content(σ) (if there is
no such odd number, then one takes e to be 1).

On the other hand, suppose by way of contradiction that L ∈ InfSubBc
as witnessed by M. Let σ be a Bc-locking sequence for M on Y (that is,
content(σ) ⊆ Y , and on any τ such that σ ⊆ τ and content(τ) ⊆ Y , M
outputs a grammar for Y). Now, let e be the largest odd number such that
〈1, x〉 ∈ content(σ) (we assume without loss of generality that there does exist
such an odd number). Now let L′ = Y ∩ Ze. So M on any text for L′ extending
σ, should output (in the limit) grammars for L′ rather than Y , a contradiction.

Similarly to the above result, a ResAllWSubEx-learner can learn sometimes
more than any MWSubBc-learner even if learnability for just infinite sublan-
guages is required.

Theorem 3. ResAllWSubEx− InfMWSubBc �= ∅.

Proof. Let Lk
0 = {〈k, i, x〉 | i > 0, x ∈ N} ∪ {〈k, 0, 0〉}.

For j ∈ N , let Lk
j+1 = {〈k, i, x〉 | i > 0, x ≤ j} ∪ {〈k, 0, j + 1〉}.

146 S. Jain and E. Kinber

Let L = {N} ∪ {Lk
rk
| k ∈ N}, where we will determine rk below.

First we show that, irrespective of the values of rk, L ∈ ResAllWSubEx. M
is defined as follows. Let gN be a grammar for N , and gk

j be a grammar for Lk
j .

M(σ) =

⎧⎨⎩ gk
j , if content(σ) ∩ {〈i, 0, x〉 | i, x ∈ N} = {〈k, 0, j〉} and

content(σ) ⊆ Lk
j ;

gN , otherwise.

Above M witnesses that L ∈ ResAllWSubEx, as except for N , all languages
in the class are minimal languages in the class, containing exactly one element
from {〈i, 0, x〉 | i, x ∈ N}.

Now we select rk appropriately to show that Mk does not InfMWSubBc-
identify L. Consider the behaviour of Mk on inputs being Sk

j = Lk
j −{〈k, 0, j〉}.

Note that Mk cannot TxtBc1-identify the class {Sk
j | j ∈ N} (based on

[Gol67]; here TxtBc1-identification is similar to TxtBc-identification except
that on texts for language L, M is allowed to output grammars which enu-
merate L, except for upto one error (of either omission or commission)). Pick
rk such that Mk does not TxtBc1-identify Sk

rk
. Now, on input language being

Sk
rk

, Mk, in the limit, is supposed to output grammars for either Sk
rk

or Lk
rk

,
and thus TxtBc1-identify Sk

rk
, a contradiction. Since k was arbitrary, theorem

follows.

Now we show that limiting learnability to just infinite sublanguages, even in the
most restrictive model, can give us sometimes more than learners in the least
restrictive model (2) required to learn descriptions for all sublanguages.

Theorem 4. ResInfSubEx−AllWSubBc �= ∅.

Proof. Using Kleene’s Recursion Theorem [Rog67], for any i, let ei be such
that Wei = {〈i, ei, x〉 | x ∈ N}. If Mi does not TxtBc-identify Wei , then let
Li = Wei . Else, let σi be a TxtBc-locking sequence for Mi on Wei . Without loss
of generality assume that content(σi) �= ∅. Using Kleene’s Recursion Theorem
[Rog67], let ei

′ > ei be such that We′
i

= content(σi) ∪ {〈i, e′i, x〉 | x ∈ N}, and
then let Li = We′

i
.

Let L = {Li | i ∈ N}. Now clearly, L is in ResInfSubEx, as the learner can
just output the maximum value of π3

2(x), where x is in the input language.
We now show L �∈ AllWSubBc. For any i either Mi does not TxtBc-

identify Wei = Li or on any text extending σi for content(σi) ⊆ Li, beyond σi,
Mi outputs only grammars for Wei — which is not contained in any L ∈ L.
It follows that Mi does not AllWSubBc-identify L. Since i was arbitrary, the
theorem follows.

We now note that not all classes learnable within the traditional paradigm of
algorithmic learning are learnable in our weakest model even if learnability of
only infinite sublanguages is required.

Learning and Extending Sublanguages 147

Theorem 5. Fin− InfWSubBc �= ∅.

Proof. Let Le = {〈1, e〉} ∪ {〈0, x〉 | x ∈ We}. Let L = {Le | e ∈ N}. It is easy
to verify that L ∈ Fin. However L ∈ InfWSubBc implies that for any text T
for Le − {〈1, e〉}, the learner must either (i) output grammars for Le on almost
all initial segments of T , or (ii) output grammars for Le − {〈1, e〉} on almost all
initial segments of T . Thus, an easy modification of this learner would give us
that E ∈ TxtBc, a contradiction to a result from [CL82].

Following theorem gives yet another cost of learning sublanguages requirement:
increase in mind changes.

Theorem 6. There exists L ∈ AllSubEx ∩ Fin ∩ ResAllMWSubEx, which
cannot be InfSubEx-identified by any learner making at most n mind changes.

On the other hand, Bc-learners in the most restrictive model of sublanguage
learnability can sometimes learn more than traditional Ex-learners that are not
required to learn sublanguages.

Theorem 7. ResAllSubBc−TxtEx �= ∅.

Proof. Let L = {∅} ∪ {Si | i ∈ N}, where Si would be defined below. Let
Li = {〈i, x〉 | x ∈ N}. For some ei, Si will satisfy the following two properties:

A) ∅ ⊂ Si ⊆ Lei ,
B) Wei enumerates an infinite set of elements such that all but finitely many

of these are grammars for Si.
It follows immediately from above that L ∈ ResAllSubBc, as on an input

being a nonempty subset of Lei , a learner can just output an increasing sequence
of elements from Wei .

We now define Si such that Mi does not TxtEx-identify Si. By implicit use
of Kleene’s Recursion Theorem [Rog67], there exists an ei such that Wei may
be defined as follows.

Let X = {σ | content(σ) ⊆ Lei ∧ ∅ ⊂ content(σ) ⊂WMi(σ)}.
Let Y = {σ | content(σ) ⊆ Lei ∧ (∃τ | σ ⊆ τ)[content(τ) ⊆ Lei ∧ Mi(σ) �=

Mi(τ)]}.
Note that both X and Y are recursively enumerable. We assume without

loss of generality that X is not empty. Let τ0, τ1, . . . be an infinite recursive
sequence such that {τj | j ∈ N} = X . Let Y0, Y1, . . . be a sequence of recursive
approximations to Y such that Yj ⊆ Yj+1 and

⋃
j∈N Yj = Y .

We now define Wei as follows. Let gj be defined such that

Wgj =
{

content(τj), if τj �∈ Y ;
Lei , otherwise.

Let sr = max({j ≤ r | (∀j′ < j)[τj′ ∈ Yr]}).
Now, if Mi does not have a stabilizing sequence, belonging to X , for Lei ,

then every gr is a grammar for Lei , which is not TxtEx-identified by Mi. In
this case, let Si = Lei . On the other hand, if j is the least number such that

148 S. Jain and E. Kinber

τj is a stabilizing sequence for Mi on Lei , then limr→∞ sr = j, and Wgj is a
grammar for content(τj), which is not TxtEx-identified by Mi. In this case let
Si = content(τj). Clearly, (A) is satisfied and Mi does not TxtEx-identify Si.

Let pad be a 1–1 recursive function such that Wpad(i,j) = Wi, for all i, j.
Let Wei = {pad(gsr , r) | r ∈ N}. It is easy to verify that (B) is satisfied. The
theorem follows.

Our next result shows that learners in all our models that are required to learn
all sublanguages can be made consistent (with the input seen so far). This can
be proved in a way similar to Theorem 28 in [JKW04].

Theorem 8. Suppose I ∈ {Sub,WSub,MWSub}.
(a) AllIEx ⊆ AllICons.
(b) ResAllIEx ⊆ ResAllICons.

On the other hand, if learnability of infinite sublanguages only is required, con-
sistency cannot be achieved sometimes.

Theorem 9. ResInfSubEx−Cons �= ∅.

Proof. Let L = {L | card(L) = ∞ and (∃e)[We = L and (∀∞x ∈ L)[π2
1(x) = e]]}.

It is easy to verify that L ∈ ResInfSubEx. The proof of Proposition 29 in
[JKW04] can be adapted to show that L �∈ Cons.

4 Some Characterizations

In this section, we suggest some characterizations for sublanguage learnability
of indexed classes. First, we get a characterization of ResAllSubEx in terms of
requirements that must be imposed on regular TxtEx-learnability.

Theorem 10. Suppose L = {L0, L1, . . .} is an indexed family of recursive lan-
guages. Then L ∈ ResAllSubEx iff (a) to (d) below hold.

(a) L ∈ TxtEx;
(b) L is closed under non-empty infinite intersections (that is, for any non-

empty L′ ⊆ L,
⋂

L∈L′ L ∈ L);
For any set S, let MinL(S) denote the minimal language in L which contains

S, if any (note that due to closure under intersections, there is a unique minimal
language containing S in L, if any).

(c) For all finite S such that for some L ∈ L, S ⊆ L, one can effectively find
in the limit a L-grammar for MinL(S);

(d) For all infinite S which are contained in some L ∈ L, MinL(S) =
MinL(X), for some finite subset X of S.

Proof. (=⇒) Suppose L ∈ ResAllSubEx as witnessed by M.
(a) and (b) follow using the definition of ResAllSubEx.
(c): Given any finite set S which is contained in some language in L, for any
text TS for S, M(TS) converges to a (r.e.) grammar for the minimal language

Learning and Extending Sublanguages 149

in L. This r.e. grammar can now be easily converted to a L-grammar using
TxtEx-identifiability of L (note that for an indexed family of recursive lan-
guages, TxtEx learnability implies learnability using the hypothesis space L).
(d): Suppose by way of contradiction that (d) does not hold. We then construct
a text for S on which M does not converge to MinL(S). Let (Xi)i∈N be a
family of non-empty and finite sets such that

⋃
i∈N Xi = S and Xi ⊆ Xi+1 for

all i. Define σ0 = Λ. Let σi+1 be an extension of σi such that content(σi+1) =
Xi, and M(σi+1) is a grammar for MinL(Xi) (note that there exists such a
σi+1 as M on any text for Xi converges to a grammar for MinL(Xi)). Now let
T =

⋃
i∈N σi. Clearly, T is a text for S. However, M(T) does not converge to a

grammar for MinL(S), as MinL(Xi) �= MinL(S), for all i (by assumption about
(d) not holding). A contradiction to M ResAllSubEx-identifying L. Thus, (d)
must hold.
(⇐=) Suppose (a) to (d) are satisfied. Let f be a recursive function such that for
all finite S, limt→∞ f(S, t) is an L-grammar for MinL(S) (by clause (c), there
exists such an f). Then, define M′ as follows. M′ on any input T [n], computes
inj = f(content(T [j]), n), for j ≤ n. Then it outputs inj , for minimal j such that
content(T [n]) ⊆ Lin

j
. By definition of f , for each j, ij = limn→∞ inj is defined

and is a L-grammar for MinL(content(T [j])). As for all but finitely many j,
MinL(content(T [j])) = MinL(content(T)) (by clause (d)), we have that M′

will converge on T to ik, where k is minimal such j. It follows that M′(T)
converges to a L-grammar for MinL(content(T)). Note that this also implies
TxtEx-identifiability of L by M′.

Our next theorem shows that if an indexed class is learnable within models (2) or
(3) under the requirement that the last (correct) conjecture is a member of the
learnable class L, then the learner can use conjectures from the class L itself. In
particular, this result will be used in our next characterizations.

Theorem 11. Suppose L = {L0, L1, . . .} is an indexed family of
recursive languages. Then L ∈ ResAllWSubEx (ResInfWSubEx,
ResAllMWSubEx, ResInfMWSubEx) iff there exists a machine M
such that M ResAllWSubEx-identifies (ResInfWSubEx-identifies,
ResAllMWSubEx-identifies, ResInfMWSubEx-identifies) L using L
as a hypothesis space.

Now we show that learnability within the model ResAllWSubEx is equiva-
lent to regular learnability TxtEx if a learner just stabilizes on every input
sublanguage of every language in the learnable indexed family L.

Theorem 12. Suppose L = {L0, L1, . . .} is an indexed family of recursive lan-
guages. Then L ∈ ResAllWSubEx iff there exists a machine M such that:
(a) M TxtEx-identifies L using hypothesis space L.
(b) For all texts T such that, for some L ∈ L, content(T) ⊆ L, we have: M(T)↓.

Proof. (=⇒) If L ∈ ResAllWSubEx, then (a) and (b) follow from the definition
of ResAllWSubEx and Theorem 11.

150 S. Jain and E. Kinber

(⇐=) Suppose M is given such that (a) and (b) hold. Define M′ as follows:

M′(σ) =
{

M(σ), if content(σ) ⊆ LM(σ);
j, otherwise, where j = min({|σ|} ∪ {i : content(σ) ⊆ Li}).

The first clause ensures TxtEx learnability of L by M′ using the hypothesis
space L. Now consider any text T for L′ ⊆ L where L ∈ L. Since M converges on
T , let i be such that M(T) = i. If content(T) ⊆ Li, then clearly M′(T) = i too.
On the other hand, if content(T) �⊆ Li, then by the second clause in the definition
of M′, M′(T) will converge to the least j such that content(T) ⊆ Lj . It follows
that M′ ResAllWSubEx-identifies L using the hypothesis space L.

Proof technique used for Theorem 12 can also be used to show the following.

Theorem 13. Suppose L = {L0, L1, . . .} is an indexed family of recursive lan-
guages. Then L ∈ ResInfWSubEx iff there exists a machine M such that:

(a) M TxtEx-identifies L using the hypothesis space L.
(b) For all texts T such that content(T) is infinite and content(T) ⊆ L for

some L ∈ L, M(T)↓.

The next theorem presents a simple natural condition sufficient for learnability
of indexed classes in the model ResAllWSubEx.

Theorem 14. Suppose L is an indexed family of recursive languages such that
for any distinct languages L1, L2 in L, L1 �⊂ L2. Then, L ∈ ResAllWSubEx.

Proof. Suppose L = {L0, L1, . . .}. Then, M on input σ outputs the least i such
that content(σ) ⊆ Li. It is easy to verify that M ResAllWSubEx-identifies L.

5 Monotonicity Constraints

In this section we consider sublanguage learnability satisfying monotonicity
constraints. Our primary goal is to explore how so-called strong monotonicity
([Jan91]) affects sublanguage learnability: the learners are strongly monotonic
for the criteria discussed in this paper in the sense that when we get more data
in the text, then the languages conjectured are larger.

Definition 8. [Jan91] (a) M is said to be strong-monotonic on L just in case
(∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(σ) =? ∨ WM(σ) ⊆WM(τ)].

(b) M is said to be strong-monotonic on L just in case M is strong-monotonic
on each L ∈ L.

(c) SMon = {L | (∃M)[M is strong-monotonic on L and L ⊆ TxtEx(M)]}.

Let AllWSubSMon, etc, denote the corresponding learning criteria. In those
criteria, Ex-type of learnability is assumed by default, unless Bc is explicitly
added at the end.

Learning and Extending Sublanguages 151

Unlike the general case of sublanguage learning, strong monotonicity require-
ment forces all variants of the least restrictive model (2) to collapse to the most
restrictive model (1). For Bc-learning, it can also be shown that there is no
difference whether only infinite sublanguages are required to be learned, or all
sublanguages. This later result though does not hold when we consider Ex-
learning, or require the learners to converge to grammars for a language within
the class.

Theorem 15. (a) AllWSubSMon ⊆ AllSubSMon.
(b) InfWSubSMon ⊆ InfSubSMon.
(c) AllWSubSMonBc ⊆ AllSubSMonBc.
(d) InfWSubSMonBc ⊆ InfSubSMonBc.
(e) InfSubSMonBc ⊆ AllSubSMonBc.
(a) to (d) above hold for Res versions too.

Proof. We show (a). (b) to (e) (and Res versions for (a) to (d)) can be proved
similarly. Suppose M AllWSubSMon-identifies L. We first note that for all
L ∈ L, for all σ such that content(σ) ⊆ L, WM(σ) ⊆ L. This is so, since otherwise
for any text T for L which extends σ, M does not output a grammar contained
in L for any extension of σ, due to strong monotonicity of M. This, along with
AllWSubSMon-identifiability of L by M, implies AllSubSMon-identifiability
of L by M.

Similar result as Theorem 15 holds (essentially by definition) if, instead of re-
quiring strong monotonicity of the learner, one requires that for all L ∈ L, for
all σ such that content(σ) ⊆ L, WM(σ) ⊆ L.

Note that the proof of Theorem 15 is not able to show InfSubSMon ⊆
AllSubSMon, as an InfSubSMon-learner may not converge on finite sets.
Similarly, we do not get ResInfSubSMonBc ⊆ ResAllSubSMonBc using
the above proof. The following two theorems show that the above failure is not
avoidable.

Theorem 16. ResInfSubSMon−AllSubSMon �= ∅.

Proof. Let Xi,j = {〈i, j, x〉 | x ∈ N}. Using Kleene’s Recursion Theorem [Rog67],
for any i, let ei be such that Wei is defined as follows. If there is no TxtEx-
stabilizing sequence for Mi on Xi,ei , then Wei = Xi,ei . Otherwise, Wei is a
finite set such that content(σi) ⊆ Wei ⊆ Xi,ei , where σi is the least TxtEx-
stabilizing sequence for Mi on Xi,ei (here, without loss of generality we assume
that content(σi) �= ∅). Note that one can define such Wei as one can find the
least TxtEx-stabilizing sequence, if any, in the limit.

If Mi does not have a TxtEx-stabilizing sequence on Xi,ei , then let Li = Wei .
Otherwise, let σi be the least TxtEx-stabilizing sequence for Mi on Xi,ei . Define
Si based on following two cases.

Case 1: WMi(σi) contains an infinite subset of Xi,ei . In this case let Si =
content(σi).

152 S. Jain and E. Kinber

Case 2: Not case 1. In this case, let Si be a finite set such that content(σi) ⊆
Si ⊆ Xi,ei and Si �⊆WMi(σi).

Using Kleene’s Recursion Theorem [Rog67], let ei
′ > ei be such that We′

i
=

Si ∪Wei ∪ {〈i, e′i, x〉 | x ∈ N}, and then let Li = We′
i
.

Let L = {Li | i ∈ N}. Now clearly, L is in ResInfSubSMon, as (on an
input with non-empty content) the learner can just output the maximum value
of π3

2(x), where x is in the input language.
Now suppose by way of contradiction thatMi AllSubSMon-identifiesL. IfMi

does not have a TxtEx-stabilizing sequence on Xi,ei , then Mi does not TxtEx-
identify Li = Wei = Xi,ei ∈ L. Thus Mi cannot AllSubSMon-identify L.

On the other hand, if Mi has σi as the least TxtEx-stabilizing sequence on
Xi,ei , then: in Case 1 above, Mi cannot SMon-identify Li, as WMi(σi) is not a
subset of Li; in Case 2 above, Mi on any text for Si, which extends σi, converges
to WMi(σi), which is not a superset of Si.

It follows that L �∈ AllSubSMon.

Theorem 17. ResInfSubSMon−ResAllSubBc �= ∅.

Proof. Suppose M0,M1, . . . is a recursive enumeration of all inductive inference
machines. Define Li as follows. Let Ti be a text for {〈i, 0〉}. If Mi(Ti) infinitely
often outputs a grammar containing 〈i, 2x〉, for some x > 0, then let Li =
{〈i, 0〉} ∪ {〈i, 2x+ 1〉 | x ∈ N}. Otherwise, let Li = {〈i, 0〉} ∪ {〈i, 2x〉 | x ∈ N}.

Let L = {Li | i ∈ N}.
By construction of Li, Mi on Ti infinitely often outputs a grammar different

from the grammar for Li, the only language in L which contains content(Ti).
Thus, L �∈ ResAllSubBc.

On the other hand, it is easy to verify that L ∈ ResInfSubSMon (as one
can easily determine Li from a text for any subset of Li, which contains at least
one element other than 〈i, 0〉).

Our proof of Theorem 1 also shows

Theorem 18. AllSubSMon−ResInfWSubBc �= ∅.

Acknowledgements. We thank the anonymous referees of ALT for several
helpful comments.

References

[Ang80a] D. Angluin. Finding patterns common to a set of strings. Journal of Com-
puter and System Sciences, 21:46–62, 1980.

[Ang80b] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[Bār74a] J. Bārzdiņš. Inductive inference of automata, functions and programs. In
Int. Math. Congress, Vancouver, pages 771–776, 1974.

Learning and Extending Sublanguages 153

[Bār74b] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, vol. 1, pages 82–88. Latvian State University,
1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[CL82] J. Case and C. Lynes. Machine inductive inference and language identifica-
tion. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th In-
ternational Colloquium on Automata, Languages and Programming, volume
140 of Lecture Notes in Computer Science, pages 107–115. Springer-Verlag,
1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[FJ96] M. Fulk and S. Jain. Learning in the presence of inaccurate information.
Theoretical Computer Science A, 161:235–261, 1996.

[Ful85] M. Fulk. A Study of Inductive Inference Machines. PhD thesis,
SUNY/Buffalo, 1985.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[Jan91] K. Jantke. Monotonic and non-monotonic inductive inference. New Gener-
ation Computing, 8:349–360, 1991.

[JKW04] S. Jain, E. Kinber, and R. Wiehagen. Learning all subfunctions of a function.
Information and Computation, 192(2):185–215, August 2004.

[KY95] S. Kobayashi and T. Yokomori. On approximately identifying concept
classes in the limit. In K. Jantke, T. Shinohara, and T. Zeugmann, editors,
Algorithmic Learning Theory: Sixth International Workshop (ALT ’95), vol-
ume 997 of Lecture Notes in Artificial Intelligence, pages 298–312. Springer-
Verlag, 1995.

[Muk94] Y. Mukouchi. Inductive inference of an approximate concept from positive
data. In S. Arikawa and K. Jantke, editors, Algorithmic Learning The-
ory: Fourth International Workshop on Analogical and Inductive Inference
(AII ’94) and Fifth International Workshop on Algorithmic Learning The-
ory (ALT ’94), volume 872 of Lecture Notes in Artificial Intelligence, pages
484–499. Springer-Verlag, 1994.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
1986.

[OW82a] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[OW82b] D. Osherson and S. Weinstein. A note on formal learning theory. Cognition,
11:77–88, 1982.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

Iterative Learning from Positive Data and
Negative Counterexamples

Sanjay Jain1,� and Efim Kinber2

1 School of Computing, National University of Singapore, Singapore 117543
sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A.

kinbere@sacredheart.edu

Abstract. A model for learning in the limit is defined where a (so-called
iterative) learner gets all positive examples from the target language,
tests every new conjecture with a teacher (oracle) if it is a subset of
the target language (and if it is not, then it receives a negative coun-
terexample), and uses only limited long-term memory (incorporated in
conjectures). Three variants of this model are compared: when a learner
receives least negative counterexamples, the ones whose size is bounded
by the maximum size of input seen so far, and arbitrary ones. We also
compare our learnability model with other relevant models of learnability
in the limit, study how our model works for indexed classes of recursive
languages, and show that learners in our model can work in non-U-shaped
way — never abandoning the first right conjecture.

1 Introduction

In 1967 E. M. Gold [Gol67] suggested an algorithmic model for learning lan-
guages and other possibly infinite concepts. This model, TxtEx, where a learner
gets all positive examples and stabilizes on the right description (a grammar) for
the target concept, was adopted by computer and cognitive scientists (see, for
example, [Pin79]) as a basis for discussion on algorithmic modeling of certain cog-
nitive processes. Since then other different formal models of algorithmic learning
in the limit have been defined and discussed in the literature. One of the major
questions stimulating this discussion is what type of input information can be
considered reasonable in various potentially infinite learning processes. Another
important question is what amount of input data a learner can store in its (long-
term) memory. Yet another issue is the way how input data is communicated to
the learner. In Gold’s original model the learner is able to store potentially all in-
put (positive) examples in its long-term memory; still, the latter assumption may
be unrealistic for certain learning processes. Gold also considered a variant of his
model where the learner receives all positive and all negative examples. However,
while it is natural to assume that some negative data may be available to the

� Supported in part by NUS grant number R252-000-127-112.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 154–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Iterative Learning from Positive Data and Negative Counterexamples 155

learner, this variant, InfEx, though interesting from theoretical standpoint (for
example, it can be used as a formal model for learning classes of functions, see
[JORS99]), can hardly be regarded as adequate for most of the learning processes
in question. R. Wiehagen in [Wie76] (see also [LZ96]) suggested a variant of the
Gold’s original model, so-called iterative learners, whose long-term memory can-
not grow indefinitely (in fact, it is incorporated into the learner’s conjectures).
This model has been considered for learnability from all positive examples (de-
noted as TxtIt) and from all positive and all negative examples (InfIt). In her
paper [Ang88], D. Angluin suggested a model of learnability, where data about
the target concept is communicated to a learner in a way different from the
Gold’s model – it is supplied to the learner by a minimally adequate teacher
(oracle) in response to queries from a learner. Angluin considered different type
of queries, in particular, membership queries, where the learner asks if a partic-
ular word is in the target concept, and subset queries, where the learner tests
if the current conjecture is a subset of the target language — if not, then the
learner may get a negative counterexample from a teacher (subset queries and
corresponding counterexamples help a learner to refute overgeneralizing wrong
conjectures; K. Popper [Pop68] regarded refutation of overgeneralizing conjec-
tures as a vital part of learning and discovery processes).

In [JK04], the authors introduced the model (NCEx) combining the Gold’s
model, TxtEx, and the Angluin’s model: a NCEx-learner receives all positive
examples of the target concept and makes subset query about each conjecture
— receiving a negative counterexample if the answer is negative. This model is
along the line of research related to the Gold’s model for learnability from pos-
itive data in presence of some negative data (see also [Mot91, BCJ95]). Three
variants of negative examples supplied by the teacher were considered: negative
counterexamples of arbitrary size, if any (the main model NCEx), least coun-
terexamples (LNCEx), and counterexamples whose size would be bounded by
the maximum size of positive input data seen so far (BNCEx) — thus, reflecting
complexity issues that the teacher might have. In this paper, we incorporate the
limitation on the long-term memory reflected in the It-approach into all three
above variants of learning from positive data and negative counterexamples: in
our new model, NCIt (and its variations), the learner gets full positive data and
asks a subset query about every conjecture, however, the long-term memory is
a part of a conjecture, and, thus, cannot store indefinitely growing amount of
input data (since, otherwise, the learner cannot stabilize to a single right con-
jecture). Thus, the learners in our model, while still getting full positive data,
get just as many negative examples as necessary (a finite number, if the learner
succeeds) and can use only a finite amount of long-term memory. We explore
different aspects of our model. In particular, we compare all three variants be-
tween themselves and with other relevant models of algorithmic learning in the
limit discussed above. We also study how our model works in the context of
learning indexed (that is, effectively enumerable) classes of recursive languages
(such popular classes as pattern languages (see [Ang80]) and regular languages

156 S. Jain and E. Kinber

are among them). In the end, we present a result that learners in our model can
work in non-U-shaped way — not ever abandoning a right conjecture.

The paper is structured as follows. In Sections 2 and 3 we introduce necessary
notation and formally introduce our and other relevant learnability models and
establish trivial relationships between them. Section 4 is devoted to relation-
ships between the three above mentioned variants of NCIt. First, we present
a result that least examples do not have advantage over arbitrary ones — this
result is similar to the corresponding result for NCEx obtained in [JK04], how-
ever, the (omitted) proof is more complex. Then we show that capabilities of
iterative learners getting counterexamples of arbitrary size and those getting
short counterexamples are incomparable. The fact that short counterexamples
can sometimes help more than arbitrary ones is quite surprising: if a short coun-
terexample is available, then an arbitrary one is trivially available, but not vice
versa — this circumstance can be easily used by NCEx-learners to simulate
BNCEx-learners, but not vice versa, as shown in [JK04]. However, it turns out
that iterative learners can sometimes use the fact that a short counterexample
is not available to learn concepts, for which arbitrary counterexamples are of no
help at all!

Section 5 compares our models with other popular models of learnability in
the limit. First, TxtEx-learners, capable of storing potentially all positive input
data, can learn sometimes more than NCIt-learners, even if the latter ones are
allowed to make a finite number of errors in the final conjecture. On the other
hand, NCIt-learners can sometimes do more than the TxtEx-learners (being
able to store all positive data). We also establish a difference between NCIt
and TxtEx on yet another level: it turns out that adding an arbitrary recursive
language to a NCIt-learnable class preserves its NCIt-learnability, while it is
trivially not true for TxtEx-learners. An interesting — and quite unexpected —
result is that NCIt-learners can simulate any InfIt-learner. Note that InfIt gets
access to full negative data, whereas an NCIt-learner gets only finite number
of negative counterexamples (although both of them are not capable of storing
all input data)! Moreover, NCIt-learners can sometimes learn more than any
InfIt-learner. The fact that NCIt-learners receive negative counterexamples
to wrong “overinclusive” conjectures (that is conjectures which include elments
outside the language) is exploited in the relevant proof. Here note that for NCEx
and InfEx-learning where all data can be remembered, NCEx ⊂ InfEx. So
the relationship between negative counterexamples and complete negative data
differs quite a bit from the noniterative case.

In Section 6, we consider NCIt-learnability of indexed classes of recursive
languages. Our main result here is that all such classes are NCIt-learnable.
Note that it is typically not the case when just positive data is available —
even with unbounded long-term memory. On the other hand, interestingly, there
are indexed classes that are not learnable if a learner uses the set of programs
computing just the languages from the given class as its hypotheses space (so-
called class-preserving type of learning, see [ZL95]). That is, full learning power
of NCIt-learners on indexed classes can only be reached, if subset queries can

Iterative Learning from Positive Data and Negative Counterexamples 157

be posed for conjectures representing languages outside the class. Dependability
of learning via queries in dependence of hypothesis space has been studied, in
particular, in [LZ04].

In Section 7, we present a result that NCIt-learning can be done so that a
learner never abandons a right conjecture (so-called non-U-shaped learning, see
[BCM+05], became a popular subject in developmental psychology, see [Bow82]).

Due to space restrictions, some proofs are omitted. We refer the reader to
[JK06a] for details.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N de-
notes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and ⊃ de-
note empty set, subset, proper subset, superset, and proper superset, respectively.
Cardinality of a set S is denoted by card(S). The maximum and minimum of a set
are denoted by max(·),min(·), respectively, where max(∅) = 0 and min(∅) = ∞.
L1ΔL2 denotes the symmetric difference of L1 and L2, that is L1ΔL2 = (L1 −
L2)∪(L2−L1). For a natural number a, we say that L1 =a L2, iff card(L1ΔL2) ≤
a. We say that L1 =∗ L2, iff card(L1ΔL2) < ∞. Thus, we take n < ∗ < ∞, for
all n ∈ N . If L1 =a L2, then we say that L1 is an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is monotonically
increasing in both of its arguments. Let cyli = {〈i, x〉 | x ∈ N}.

By Wi we denote the i-th recursively enumerable set in some fixed acceptable
numbering. We also say that i is a grammar for Wi. Symbol E will denote the set
of all r.e. languages. Symbol L, with or without decorations, ranges over E . By
χL we denote the characteristic function of L. By L, we denote the complement
of L, that is N −L. Symbol L, with or without decorations, ranges over subsets
of E . By Wi,s we denote the set of elements enumerated in Wi within s steps.
We assume without loss of generality that Wi,s ⊆ {x | x ≤ s}.

We often need to use padding to be able to attach some relevant information
to a grammar. pad(j, ·, ·, . . .) denotes a 1–1 recursive function (of appropriate
number of arguments) such that Wpad(j,·,·,...) = Wj . Such recursive functions
can easily be shown to exist [Rog67].

We now present concepts from language learning theory. First, we introduce the
concept of a sequence of data. A sequence σ is a mapping from an initial segment of
N into (N∪{#}). The empty sequence is denoted by Λ. The content of a sequence
σ, denoted content(σ), is the set of natural numbers in the range of σ. The length
of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0. For n ≤ |σ|, the
initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ ,
and γ, with or without decorations, range over finite sequences. We denote the
sequence formed by the concatenation of τ at the end of σ by σ0τ . For simplicity
of notation, sometimes we omit 0, when it is clear that concatenation is meant.
SEQ denotes the set of all finite sequences.

158 S. Jain and E. Kinber

A text (see [Gol67]) T for a language L is a mapping from N into (N ∪ {#})
such that L is the set of natural numbers in the range of T . T (i) represents the
(i + 1)-th element in the text. The content of a text T , denoted by content(T),
is the set of natural numbers in the range of T ; that is, the language which T is
a text for. T [n] denotes the finite initial sequence of T with length n.

A language learning machine from texts [Gol67] is an algorithmic device which
computes a (possibly partial) mapping from SEQ into N .

An informant (see [Gol67]) I is a mapping from N to (N × {0, 1}) ∪# such
that for no x ∈ N , both (x, 0) and (x, 1) are in the range of I. content(I) = set of
pairs in the range of I (that is range(I)−{#}). We say that a I is an informant
for L iff content(I) = {(x, χL(x)) | x ∈ N}. A canonical informant for L is the
informant (0, χL(0))(1, χL(1)) Intuitively, informants give both all positive
and all negative data for the language being learned. I[n] is the first n elements
of the informant I. One can similarly define language learning machines from
informants.

We let M, with or without decorations, range over learning machines. M(T [n])
(or M(I[n])) is interpreted as the grammar (index for an accepting program)
conjectured by the learning machine M on the initial sequence T [n] (or I[n]). We
say that M converges on T to i, (written: M(T)↓ = i) iff (∀∞n)[M(T [n]) = i].
Convergence on informants is similarly defined.

There are several criteria for a learning machine to be successful on a language.
Below we define some of them. All of the criteria defined below are variants of
the Ex-style learning described in Introduction and its extension, behaviourally
correct, or Bc-style learning (where a learner produces conjectures, almost all
of which are correct, but not necessarily the same, see [CL82] for formal defini-
tion); in addition, they allow a finite number of errors in almost all conjectures
(uniformly bounded number, or arbitrary).

Definition 1. [Gol67, CL82] Suppose a ∈ N ∪ {∗}.
(a) M TxtExa-identifies a language L (written: L ∈ TxtExa(M)) just in

case, for all texts T for L, (∃i |Wi =a L) (∀∞n)[M(T [n]) = i].
(b) M TxtExa-identifies a class L of r.e. languages (written: L ⊆

TxtExa(M)) just in case M TxtExa-identifies each L ∈ L.
(c) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

If instead of convergence to a grammar on text T , we just require that all but
finitely many grammars output by M on T are for an a-variant of content(T),
(that is, (∀∞n)[WM(T [n]) =a L]), then we get TxtBca-identification. We refer
the reader to [CL82] or [JORS99] for details.

Definition 2. [Gol67, CL82] Suppose a ∈ N ∪ {∗}.
(a) M InfExa-identifies L (written: L ∈ InfExa(L)), just in case for all

informants I for L, (∃i |Wi =a L) (∀∞n)[M(I[n]) = i].
(b) M InfExa-identifies a class L of r.e. languages (written: L ⊆ InfExa(M))

just in case M InfExa-identifies each language from L.
(c) InfExa = {L ⊆ E | (∃M)[L ⊆ InfExa(M)]}.

One can similarly define InfBca-identification [CL82].

Iterative Learning from Positive Data and Negative Counterexamples 159

Intuitively, an iterative learner [Wie76, LZ96] is a learner whose hypothe-
sis depends only on its last conjecture and current input. That is, for n ≥ 0,
M(T [n + 1]) can be computed algorithmically from M(T [n]) and T (n). Thus,
one can describe the behaviour of M via a partial recursive function F (p, x),
where M(T [n + 1]) = F (M(T [n]), T (n)). Here, note that M(T [0]) is predefined
to be some constant value. We will often identify F above with M (that is use
M(p, x) to describe M(T [n+1]), where p = M(T [n]) and x = T (n)). This is for
ease of notation.

Below we formally define TxtIta. InfIta can be defined similarly.

Definition 3. [Wie76, LZ96]
(a) M TxtIta-identifies L, iff M TxtExa-identifies L, and for all σ, τ and

x, if M(σ) = M(τ), then M(σx) = M(τx). We further assume that M(σ) is
defined for all σ such that for some L ∈ L, content(σ) ⊆ L.

(b) TxtIta = {L | (∃M)[M TxtIta-identifies L]}.

For Exa and Bca models of learning (for learning from texts or informants or
their variants when learning from negative examples, as defined below), one may
assume without loss of generality that the learners are total. However for iterative
learning one cannot assume so. Thus, we explicitly require in the definition that
iterative learners are defined on all inputs which are initial segments of texts
(informants) for a language in the class.

Note that, although it is not stated explicitly, an It-type learner might store
some input data in its conjecture (thus serving as a limited long-term memory).
However, the amount of stored data cannot grow indefinitely, as the learner must
stabilize to one (right) conjecture

For a = 0, we often write TxtEx,TxtBc,TxtIt, InfEx, InfBc, InfIt instead
of TxtEx0,TxtBc0,TxtIt0, InfEx0, InfBc0, InfIt0, respectively.

Definition 4. [Ful90] σ is said to be a TxtEx-stabilizing sequence for M on L,
iff (a) content(σ) ⊆ L, and (b) for all τ such that content(τ) ⊆ L, M(στ) =
M(σ).

Definition 5. [BB75, Ful90] σ is said to be a TxtEx-locking sequence for M
on L, iff (a) σ is a TxtEx-stabilizing sequence for M on L and (b) WM(σ) = L.

If M TxtEx-identifies L, then every TxtEx-stabilizing sequence for M on L is
a TxtEx-locking sequence for M on L. Furthermore, one can show that if M
TxtEx-identifies L, then for every σ such that content(σ) ⊆ L, there exists a
TxtEx-locking sequence, which extends σ, for M on L (see [BB75, Ful90]).

Similar result can be shown for InfEx, TxtBc, InfBc and other criteria of
learning discussed in this paper. We will often drop TxtEx (and other criteria
notation) from TxtEx-stabilizing sequence and TxtEx-locking sequence, when
the criterion is clear from context.
L is said to be an indexed family of languages iff there exists an indexing

L0, L1, . . . of languages in L such that the question x ∈ Li is uniformly decidable
(i.e., there exists a recursive function f such that f(i, x) = χLi(x)).

160 S. Jain and E. Kinber

3 Learning with Negative Counterexamples

In this section we formally define our models of learning from full positive data
and negative counterexamples as given by [JK04]. Intuitively, for learning with
negative counterexamples, we may consider the learner being provided a text,
one element at a time, along with a negative counterexample to the latest con-
jecture, if any. (One may view this negative counterexample as a response of
the teacher to the subset query when it is tested if the language generated by
the conjecture is a subset of the target language). One may model the list of
negative counterexamples as a second text for negative counterexamples being
provided to the learner. Thus the learning machines get as input two texts, one
for positive data, and other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many
n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples. In this model, if a conjecture contains elements not in the
target language, then a negative counterexample is provided to the learner. NC
in the definition below stands for negative counterexample.

Definition 6. [JK04] Suppose a ∈ N ∪ {∗}.
(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all

texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn �= ∅ and T ′(n) = #, if Sn = ∅,
where Sn = L ∩WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.
(b) M NCExa-identifies a class L of languages (written: L ⊆NCExa(M)),

iff M NCExa-identifies each language in the class.
(c) NCExa = {L | (∃M)[L ⊆NCExa(M)]}.

For ease of notation, we sometimes define M(T [n], T ′[n]) also as M(T [n]), where
we separately describe how the counterexamples T ′(n) are presented to the con-
jecture of M on input T [n].

One can similarly define NCIta-learning, where the learner’s output depends
only on the previous conjecture and the latest positive data and counterexample
provided. In these cases, we sometimes denote the output M(T [n+1], T ′[n+1]),
with M(p, T (n), T ′(n)), where p = M(T [n], T ′[n]) (here note that M(T [0], T ′[0])
is some predefined constant p0).

As an example, consider the class {S | S is finite} ∪ {N}. This class is known
not to be in TxtEx. One can learn the above class in NCIt as follows: Initially
(on empty data) conjecture a grammar for N . If there is no counterexample,
then we are done. Otherwise, one can just follow the strategy for learning finite
sets, by storing all the input data.

Jain and Kinber [JK04] also considered the cases where
(i) negative counterexamples provided are the least ones (that is, in Defini-

tion 6(a), one uses T ′(n) = min(Sn), instead of T ′(n) ∈ Sn); The corresponding
learning criterion is referred to as LNCExa, and

Iterative Learning from Positive Data and Negative Counterexamples 161

(ii) negative counterexamples are provided iff they are bounded by the largest
element seen in T [n] (that is, in Definition 6(a), one uses Sn = L∩WM(T [n],T ′[n])∩
{x | x ≤ max(content(T [n]))}); The corresponding learning criterion is referred
to as BNCExa.

We refer the reader to [JK04] for details. One can similarly define LNCIta,
BNCIta, and BNCBca, LNCBca, BNCBca criteria of learning.

It is easy to verify that, for I ∈ {Exa,Bca, Ita}, TxtI ⊆ BNCI, and TxtI ⊆
NCI ⊆ LNCI. Also for J ∈ {BNC,NC,LNC}, for a ∈ N ∪ {∗}, JIta ⊆
JExa ⊆ JBca.

4 Relationship Among Different Variations of
NCIt-Criteria

In this section we compare all three variants of iterative learners using negative
counterexamples. Our first result shows that least counterexamples do not give
advantage to learners in our model. This result is similar to the corresponding
result for NCEx-learners ([JK04]), however, the omitted proof is more complex.

Theorem 1. For all a ∈ N ∪ {∗}, LNCIta = NCIta.

One of the variants of teacher’s answers to subset queries in [Ang88] was just
“yes” or “no”. That is, the teacher just tells the learner that a counterexample
exists, but does not provide it. The above result can be extended to work under
these conditions also.

Now we will compare NCIt-learning with its variant where the size of coun-
terexamples is limited by the maximum size of the input seen so far. First we
show that, surprisingly, short counterexamples can sometimes help to iteratively
learn classes of languages not learnable by any NCIt-learner. The proof exploits
the fact that sometimes actually absence of short counterexamples can help in a
situation when arbitrary counterexamples are useless!

Theorem 2. BNCIt−NCIt∗ �= ∅.

Proof. (sketch) Let L1 = {{〈0, x〉 | x ∈We} | e = min(We), e ∈ N}.
Let L2 = {L | (∃i, j ∈ N)[card(L ∩ cyl0) <∞ and L ∩ cyl1 = {〈1, 〈i, j〉〉} and
(∀w)[〈0, 〈i, w〉〉 �∈ L] and (L− (cyl0 ∪ cyl1)) = {〈2, 〈x, k〉〉 | x ∈ Wj , k ∈ N}]}.
Let L3 = {L | (∃i, j ∈ N, finite set D)[
card(L ∩ cyl0) <∞ and L ∩ cyl1 = {〈1, 〈i, j〉〉} and
(∃w)[〈0, 〈i, w〉〉 ∈ L)] and (L − (cyl0 ∪ cyl1)) = {〈2, 〈x, k〉〉 | x ∈ D, k ∈ N}]}.

Let L = L1 ∪ L2 ∪ L3.
L can be shown to be in BNCIt−NCIt∗. Due to lack of space, we omit the

details.

The next theorem shows that NCIt-learners can sometimes do more than any
BNCBc-learner, even if the latter one is allowed to make finite number of errors
in almost all conjectures.

162 S. Jain and E. Kinber

Theorem 3. (NCIt ∩ InfIt)−BNCBc∗ �= ∅.

It can also be shown that there exists a class consisting of infinite languages
which separates NCIt and BNCIt. Note that NCEx and BNCEx have same
power for classes consisting of infinite languages, as established in [JK06b].

One can also show anomaly hierarchy for the variations of NCIta criteria:
TxtItn+1−LNCItn �= ∅. This result follows directly from TxtItn+1−InfExn �=
∅ (see [CS83]).

5 Comparison with Other Criteria of Learning

In this section we compare our model with other close relevant models of learn-
ability in the limit. Our next two results show that learners that can store in
their long-term memory potentially all positive data can sometimes learn more
than any BNCIt/NCIt-learner.

Theorem 4. TxtEx −BNCIt∗ �= ∅.

Theorem 5. TxtEx −NCIt∗ �= ∅.

Proof. L used in Theorem 2 is also in TxtEx.

The following theorem gives that NCIt-learners (even BNCIt-learners) can
sometimes be more powerful than any TxtBc∗-learner.

Theorem 6. (BNCIt ∩NCIt)−TxtBc∗ �= ∅.

Now we will compare our model with iterative learners from informants. First,
we show that there are BNCIt-learnable (NCIt-learnable) classes that can-
not be learned from informants by any iterative learner. Thus, even just finite
number of short negative data (received when necessary) can help iterative learn-
ers sometimes more than full negative data (most of it being forgotten by the
learner).

Theorem 7. (BNCIt ∩NCIt)− InfIt∗ �= ∅.

Proof. We give the proof only for (BNCIt ∩ NCIt) − InfIt �= ∅. A compli-
cated modification of this proof can be used to show that (BNCIt ∩NCIt) −
InfIt∗ �= ∅.

Let L = {{〈0, x〉 | x ∈ We} | e = min(We), e ∈ N} ∪ {L | (∃x)[〈1, x〉 ∈ L and
L− {〈1, x〉} ⊆ {〈0, y〉 | 〈0, y〉 ≤ 〈1, x〉}]}.

It is easy to verify that the above class is in BNCIt ∩NCIt. (Initially just
output a grammar for {〈0, x〉 | x ∈ We}, for the minimal e such that 〈0, e〉 is
in the input, until it is found that the input language contains 〈1, x〉 for some
x. Then using the conjectures for {〈0, y〉}, for 〈0, y〉 ≤ 〈1, x〉, one can determine
the elements of L.)
L �∈ InfIt can be shown as follows. Suppose by way of contradiction that

M InfIt-identifies L. Note that M must be defined on all information seg-
ments σ such that {x | (x, 1) ∈ content(σ)} ⊆ {〈0, y〉 | y ∈ N}, as M is

Iterative Learning from Positive Data and Negative Counterexamples 163

defined on the information segments for languages in L. Now, by implicit use
of Kleene Recursion Theorem [Rog67], there exists an e such that We may
be described as follows. Initially, e ∈ We. Let σ0 be an information segment
such that content(σ0) = {(〈0, x〉, 0) | x < e} ∪ {(〈0, e〉, 1)}. Let z0, z1, . . . be
an enumeration of elements of N − {〈0, x〉 | x ∈ N}. Suppose σs has been
defined. Define σs+1 as follows. If one of M(σs0(zs, 0)0(〈0, e + s + 1〉, 0)) and
M(σs0(zs, 0)0(〈0, e + s + 1〉, 1)) is different from M(σs), then (i) let σs+1 be
σs0(zs, 0)0(〈0, e + s + 1〉, w), where w ∈ {0, 1} and M(σs) �= M(σs+1) and (ii)
enumerate e + s + 1 in We iff w chosen above is 1.

Now if σs is defined, for all s, then M diverges on
⋃

s∈N σs, an informant for
{〈0, x〉 | x ∈We}. On the other hand, if σs+1 does not get defined (but σs does get
defined), then fix k such that 〈1, k〉 > max({〈0, x〉 | x ≤ e+s+1}∪{zr | r ≤ s}),
and let I be such that content(I) = {(〈0, x〉, 0) | x > e + s + 1} ∪ {〈zr, 0〉 | r ∈
N, zr �= 〈1, k〉}. Let Iw = σs0(zs, 0)0(〈0, e+ s+ 1〉, w)(〈1, k〉, 1)I. Note that I1 is
an informant for L1 = {〈0, x〉 | x ∈We} ∪ {〈1, k〉} ∪ {〈0, e+ s+ 1〉} and I0 is an
informant for L0 = {〈0, x〉 | x ∈We} ∪ {〈1, k〉}.

It is easy to verify that M behaves in the same way on both of the above
informants, and thus fails to InfIt-identify at least one of L0 and L1, both of
which are in L.

Our next result, together with the above theorem, shows that NCIt is a proper
superset of InfIt. Thus, just finite number of negative counterexamples re-
ceived when the learner attempts to be “overinclusive” can do more than all
negative counterexamples! Note that this is not true for BNCIt-learners, as,
InfIt−BNCIt �= ∅ follows from Theorem 3 (as BNCIt ⊆ BNCBc, by defini-
tion). Below, an initial information segment for L denotes an initial information
segment of canonical informant for L. First, we prove a useful technical lemma.

Lemma 1. Suppose M InfIta-identifies L. Then for any initial information
segment σ for L, if the following properties (a) to (c) are satisfied, then WM(σ) =a

L.
(a) For all x ∈ L such that (x, 1) �∈ content(σ), for some τ ⊆ σ, M(τ0(x, 1)) =

M(τ).
(b) For all but finitely many x ∈ L, M(σ0(x, 1)) = M(σ),
(c) {x | (x, 0) �∈ content(σ) and M(σ0(x, 0))↓ �= M(σ)↓} ⊆ L.

Proof. Let S = {x ∈ L | M(σ0(x, 1)) = M(σ)}. Now L − S is finite (by clause
(b)). Let τ be a sequence formed by inserting each element x ∈ L − S such
that (x, 1) �∈ content(σ), in σ at places so that it does not cause a mind change
(i.e., x ∈ L− S such that (x, 1) �∈ content(σ) is inserted after σ′ ⊆ σ, such that
M(σ′0(x, 1)) = M(σ′)). Note that for all x ∈ L−S such that (x, 1) �∈ content(σ),
there exists such a σ′ by clause (a). Now consider the information sequence
I = τI ′, where content(I ′) = {(x, 1) | x ∈ S} ∪ {x, 0) | (x, 0) �∈ content(σ) and
x �∈ L}. Thus, I is an information sequence for L. Using the definition of S and
(c), it is easy to verify that M(I) = M(σ). Thus, WM(σ) = WM(I) =a L, as M
InfIta-identifies L.

164 S. Jain and E. Kinber

Now we show that any InfIt-learner can be simulated by a NCIt-learner.

Theorem 8. InfIta ⊆ NCIta.

Proof. Suppose M InfIta-identifies L. We construct M′ which NCIta-identifies
L. Given a text T for L ∈ L, the aim is to construct a σ satisfying (a) to (c) of
Lemma 1.

Output of M′ on T [m] will be of form pad(pm, qm, Rm, σm). The following
invariants will be satisfied for all m.

(A) σm is an initial information segment for L. Moreover, σm ⊆ σm+1.
(B) Rm ⊆ content(T [m]), and for all x ∈ content(T [m])−Rm, either (x, 1) ∈

content(σm) or for some τ ⊆ σm, M(τ0(x, 1)) = M(τ).
(C) If qm = 0, then pm is a grammar for the set {|σm|}. Note that |σm| is the

least element x such that neither (x, 0) nor (x, 1) belongs to content(σm).
(D) If qm = 1, then pm is a grammar for {x | (x, 0) �∈ content(σm) and

M(σm0(x, 0))↓ �= M(σm)↓}. In this case, we will have additionally that Rm = ∅.
(E) If qm = 2, then we have already tested that {x | (x, 0) �∈ content(σm)

and M(σm0(x, 0))↓ �= M(σm)↓} ⊆ L. Additionally, Rm = ∅. Also in this case,
pm = M(σm).

Intuitively, we eventually want to search for σm which satisfies Lemma 1.
We want to make sure that elements of L satisfy clause (a) in Lemma 1. Rm

intuitively denotes the set of elements which may not (and thus need to be taken
care of by extending σm). Note that we need to remember this set, as iterative
learner could lose data. qm intuitively keeps track of whether we are building up
larger and larger σm or whether we are checking clause (c) in Lemma 1, or if
this checking has already been done.

Initially on input Λ, M′ outputs (p, 1, ∅, Λ), where p is a grammar for {x |
M((x, 0)) �= M(Λ)}. Clearly, invariants (A) to (E) are satisfied.

Now M′, on the input x = T (m), a counterexample y (on the conjecture
of M′ on T [m]) with previous conjecture being pad(pm, qm, Rm, σm), outputs
pad(pm+1, qm+1, Rm+1, σm+1) where the parameters pm+1, qm+1, Rm+1, σm+1
are defined as follows.

Case 1: qm = 0.

Let σm+1 = σm0(|σm|, w), where w is 1 or 0 based on whether the
counterexample is # or a numerical value. Note that pm was a grammar
for {|σm|}.

Let Rm+1 = (Rm∪{x})−({#}∪{x′ | (x′, 1) ∈ content(σm+1)}∪{x′ |
M(σm+10(x′, 1)) = M(σm+1)}).

If Rm+1 is ∅, then let qm+1 = 1 and pm+1 be a grammar for {x′ |
(x′, 0) �∈ content(σm+1) and M(σm+10(x′, 0))↓ �= M(σm+1)↓}. Else, let
qm+1 = 0 and pm+1 be a grammar for {|σm+1|}.

Invariants (A), (C), (D) and (E) are easily seen to be satisfied.
To see that invariant (B) is satisfied, note that by induction all z ∈
content(T [m])−Rm, satisfied [(z, 1) ∈ content(σm) or for some τ ⊆ σm,
M(τ0(z, 1)) = M(τ)]. On the other hand if z = T (m) = x, z �= # or

Iterative Learning from Positive Data and Negative Counterexamples 165

if z ∈ Rm, then z is missing from Rm+1 iff (z, 1) ∈ content(σm) or
M(σm+10(z, 1)) = M(σm+1). Thus, (B) is satisfied.

Case 2: qm = 1.

Let σm+1 = σm.
If there was a counterexample (i.e., y �= #), or [x �= # and (x, 1) �∈

content(σm) and M(σm0(x, 1)) �= M(σm)], then let Rm+1 = {x}− {#},
qm+1 = 0, and pm+1 be a grammar for {|σm+1|}.

Else (i.e, y = #, and [x = # or (x, 1) ∈ content(σm) or
M(σm0(x, 1)) = M(σm)]), then let Rm+1 = ∅, qm+1 = 2, and pm+1 =
M(σm).

Invariants (A), (C), (D) and (E) are easily seen to be satisfied.
To see that invariant (B) is satisfied, note that by induction all z ∈
content(T [m]), satisfied (z, 1) ∈ content(σm) or for some τ ⊆ σm,
M(τ0(z, 1)) = M(τ). Also, T (m) = x is placed in Rm+1 if (x �= #
and (x, 1) �∈ content(σm) and M(σm0(x, 1)) �= M(σm)). Thus invariant
(B) is also satisfied.

Case 3: qm = 2.

Let σm+1 = σm.
If x �= # and (x, 1) �∈ content(σm) and M(σm0(x, 1)) �= M(σm), then

let Rm+1 = {x}, qm+1 = 0 and pm+1 be a grammar for {|σm+1|}.
Else, let Rm+1 = ∅, qm+1 = 2, and pm+1 = M(σm).
Invariants (A), (C), (D) are easily seen to be satisfied. If qm+1 = 2,

then (E) also remains satisfied since qm was also 2. To see that invariant
(B) is satisfied, note that by induction all z ∈ content(T [m]) satisfied
(z, 1) ∈ content(σm) or for some τ ⊆ σm, M(τ0(z, 1)) = M(τ). Also,
T (m) = x is placed in Rm+1 if (x �= # and (x, 1) �∈ content(σm) and
M(σm0(x, 1)) �= M(σm)). Thus invariant (B) is also satisfied.

Thus, the invariants are satisfied in all cases. Moreover, limm→∞ σm

converges, as for a large enough initial information segment σm for L,
M(σm(x, χL(x))) = M(σm), for (x, χL(x)) �∈ content(σm).

Also, it is easy to verify that if qm = 0, then σm ⊂ σm+1. Thus, for all but
finitely many m, qm �= 0. Also, if qm = 1 or 2, then either qm+1 = 2 or qm+1 = 0.
It follows that limm→∞ qm = 2. Thus, by property (E), limm→∞Rm = ∅. Hence,
M′ stabilizes to a conjecture of the form (p, 2, ∅, σ), for some initial information
segment σ for L — this σ satisfies (a) — (c) in Lemma 1, as otherwise Case
3 (along with properties (B) and (E)) would eventually ensure change of qm,
and the conjecture. Thus, M′ NCIta-identifies L, as it converges to a padded
version of grammar M(σ).

We already established that learners from full positive data with indefinitely
growing long-term memory (TxtEx) can sometimes learn more than any NCIt-
learner (Theorem 5). Now we consider this difference on yet another level. It can
be easily demonstrated that adding a recursive language to a TxtEx-learnable

166 S. Jain and E. Kinber

class does not always preserve its TxtEx-learnability (see, for example, [Gol67]).
Our next result shows that adding one recursive language to a class in NCIt,
still leaves it in NCIt. (Note that the same result was obtained in [JK04] for
NCEx-learners, however, the algorithm witnessing the simulation there was
nearly trivial — unlike our simulation in the omitted proof of the following
theorem).

Theorem 9. If L ∈ NCIt and X is recursive, then L ∪ {X} ∈ NCIt.

This result cannot be extended to r.e. X . For all r.e., but non-recursive sets
A, {A ∪ {x} | x �∈ A} is in NCIt. However [JK04] showed that, for r.e. but
non-recursive A, {A} ∪ {A ∪ {x} | x �∈ A} is not in LNCEx.

6 Results Related to Indexed Families

In this section we consider NCIt-learning for indexed classes of recursive lan-
guages — one of the popular learning tasks (as it was mentioned in the In-
troduction, such popular subjects of learning as patterns and regular languages
are examples of indexed classes). Note that these classes are often not learn-
able if only (full) positive and no negative data is available even if a learner
can potentially hold all input in the long-term memory, as was established yet
by Gold ([Gol67]). Note also that there exist indexed families which are not in
BNCBc∗ (see [JK04]). Our main result in this section is that all such classes
are NCIt-learnable.

Theorem 10. Every indexed family L is in NCIt.

The complexity of the algorithm witnessing the Theorem above is underscored
by the following result showing that NCIt-learning of some indexed classes L
becomes impossible if a learner wants to use a class preserving hypothesis space
[ZL95] (that is, uses a hypothesis space H0, H1, . . . such that {Hi | i ∈ N} = L,
and for all i, x, one can effectively decide in i and x whether x ∈ Hi).

Theorem 11. There exists an indexed family L such that L is not NCIt-
learnable using a class preserving hypothesis space.

Note that if we only consider indexed families consisting of infinite languages,
then class preserving learning can be done.

By Theorem 7, in the general case, NCIt-learners can sometimes do more
than InfIt∗-learners. However, as the next theorem shows, their capabilities on
indexed classes are the same. Still, InfItn-learners cannot learn some indexed
classes.

Theorem 12. (a) If L is an indexed family, then L ∈ InfIt∗.
(b) L = {cyl0 ∪ cyl1} ∪ {cyl0 ∪D | D ⊆ cyl1, card(D) <∞} �∈

⋃
n∈N InfItn.

Iterative Learning from Positive Data and Negative Counterexamples 167

7 Non-U-shaped Learning

A learner is said to be non-U-shaped if it does not abandon a correct hypothesis
([BCM+05]). That is, its sequence of conjectures does not show a pattern of . . .,
correct conjecture, wrong conjecture, . . ., correct conjecture.

We can show that the requirement of being non-U-shaped does not hurt NCIt-
learning.

Theorem 13. LNCIt ⊆ NUNCIt.

Acknowledgements. We thank the anonymous referees of ALT for several
helpful comments.

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive infer-
ence. Information and Control, 28:125–155, 1975.

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51(5):273–285,
1995.

[BCM+05] G. Baliga, J. Case, W. Merkle, F. Stephan, and R. Wiehagen.
When unlearning helps. Manuscript, http://www.cis.udel.edu/˜case/
papers/decisive.ps, 2005.

[Bow82] M. Bowerman. Starting to talk worse: Clues to language acquisition from
children’s late speech errors. In S. Strauss and R. Stavy, editors, U-
Shaped Behavioral Growth. Developmental Psychology Series. Academic
Press, New York, 1982.

[CL82] J. Case and C. Lynes. Machine inductive inference and language identifi-
cation. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th
International Colloquium on Automata, Languages and Programming, vol-
ume 140 of Lecture Notes in Computer Science, pages 107–115. Springer-
Verlag, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[JK04] S. Jain and E. Kinber. Learning languages from positive data and negative
counterexamples. In Shai Ben-David, John Case, and Akira Maruoka,
editors, Algorithmic Learning Theory: Fifteenth International Conference
(ALT’ 2004), volume 3244 of Lecture Notes in Artificial Intelligence, pages
54–68. Springer-Verlag, 2004.

168 S. Jain and E. Kinber

[JK06a] S. Jain and E. Kinber. Iterative learning from positive data and nega-
tive counterexamples. Technical Report TRA3/06, School of Computing,
National University of Singapore, 2006.

[JK06b] S. Jain and E. Kinber. Learning languages from positive data and negative
counterexamples. Journal of Computer and System Sciences, 2006. To
appear.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[LZ96] S. Lange and T. Zeugmann. Incremental learning from positive data.
Journal of Computer and System Sciences, 53:88–103, 1996.

[LZ04] S. Lange and S. Zilles. Comparison of query learning and Gold-style learn-
ing in dependence of the hypothesis space. In Shai Ben-David, John Case,
and Akira Maruoka, editors, Algorithmic Learning Theory: Fifteenth In-
ternational Conference (ALT’ 2004), volume 3244 of Lecture Notes in Ar-
tificial Intelligence, pages 99–113. Springer-Verlag, 2004.

[Mot91] T. Motoki. Inductive inference from all positive and some negative data.
Information Processing Letters, 39(4):177–182, 1991.

[Pin79] S. Pinker. Formal models of language learning. Cognition, 7:217–283,
1979.

[Pop68] K. Popper. The Logic of Scientific Discovery. Harper Torch Books, New
York, second edition, 1968.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Journal of Information Processing and Cybernetics (EIK),
12:93–99, 1976.

[ZL95] T. Zeugmann and S. Lange. A guided tour across the boundaries of learn-
ing recursive languages. In K. Jantke and S. Lange, editors, Algorithmic
Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in
Artificial Intelligence, pages 190–258. Springer-Verlag, 1995.

Towards a Better Understanding of Incremental
Learning

Sanjay Jain1,�, Steffen Lange2, and Sandra Zilles3

1 School of Computing, National University of Singapore, Singapore 117543
sanjay@comp.nus.edu.sg

2 FB Informatik, Hochschule Darmstadt, Haardtring 100, D–64295 Darmstadt
slange@fbi.h-da.de

3 DFKI GmbH, Erwin-Schrödinger-Str. 57, D–67663 Kaiserslautern
zilles@dfki.de

Abstract. The present study aims at insights into the nature of incre-
mental learning in the context of Gold’s model of identification in the
limit. With a focus on natural requirements such as consistency and con-
servativeness, incremental learning is analysed both for learning from
positive examples and for learning from positive and negative exam-
ples. The results obtained illustrate in which way different consistency
and conservativeness demands can affect the capabilities of incremental
learners. These results may serve as a first step towards characterising
the structure of typical classes learnable incrementally and thus towards
elaborating uniform incremental learning methods.

1 Introduction

Considering data mining tasks, where specific knowledge has to be induced from
a huge amount of more or less unstructured data, several approaches have been
studied empirically in machine learning and formally in the field of learning
theory. These approaches differ in terms of the form of interaction between the
learning machine and its environment. For instance, scenarios have been anal-
ysed, where the learner receives instances of some target concept to be identified
or where the learner may pose queries concerning the target concept [6, 2, 11].
For learning from examples, one critical aspect is the limitation of a learning
machine in terms of its memory capacity. In particular, if huge amounts of data
have to be processed, it is conceivable that this capacity is too low to memorise
all relevant information during the whole learning process. This has motivated
the analysis of so-called incremental learning, cf. [4, 5, 7, 8, 9, 12], where in each
step of the learning process, the learner has access only to a limited number of ex-
amples. Thus, in each step, its hypothesis can be built upon these examples and
its former hypothesis, only. Other examples seen before have to be ‘forgotten’.

It has been analysed how such constraints affect the capabilities of learning
machines, thus revealing models in which certain classes of target concepts are

� Supported in part by NUS grant number R252-000-127-112 and R252-000-212-112.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 169–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 S. Jain, S. Lange, and S. Zilles

learnable, but not learnable in an incremental manner. However, some quite
natural constraints for successful learning have mainly been neglected in the
corresponding studies. These constraints are (a) the requirement for consistent
learning, i. e., the demand that none of the intermediate hypotheses a learner
explicates should contradict the data processed so far, and (b) the requirement
for conservative learning, i. e., the demand that each intermediate hypothesis
should be maintained as long as it is consistent with the data seen.

The fact that there is no comprehensive analysis of how these demands affect
the capabilities of incremental learners can be traced back to a lack of knowledge
about the nature of incremental learning. In particular, there is no formal basis
explaining typical or uniform ways for solving learning tasks in an incremental
way. In terms of learning theory, incremental learning is one of the very few mod-
els, for which no characterisation of the typical structure of learnable classes is
known. For other models of learning from examples, characterisations and uni-
form learning methods have often been the outcome of analysing the impact
of consistency or conservativeness, see, e. g., [13]. Thus, also in the context of
incremental learning, it is conceivable that studying these natural requirements
may yield insights into typical learning methods. In other words, analysing con-
sistency and conservativeness may be the key for a better understanding of the
nature of incremental learning and may thus, in the long term, provide charac-
terisations of learnable classes and uniform incremental learning methods.

The present study aims at insights into the nature of incremental learning
in the context of Gold’s model of learning in the limit from examples [6]. For
that purpose, we analyse Wiehagen’s version of incremental learning, namely
iterative learning [12] with a focus on consistent and conservative learners. In
Gold’s approach, learning is considered as an infinite process, where in each step
the learner is presented an example en for the target concept and is supposed to
return an intermediate hypothesis. In the limit, the hypotheses must stabilise on
a correct representation of the target concept. Here, in step n+1 of the learning
process, the learner has access to all examples e0, . . . , en provided up to step n
plus the current example en+1. In contrast, an iterative learner has no capacities
for memorising any examples seen so far, i. e., its hypothesis hn+1 in step n + 1
is built only upon the example en+1 and its previous hypothesis hn.

The present paper addresses consistency and conservativeness in the context
of iterative learning. Here several possible ways to formalise the demands for
consistency and conservativeness become apparent. Assume an iterative learner
has processed the examples e0, . . . , en+1 for some target concept and returns
some hypothesis hn+1 in step n+1. From a global perspective, one would define
hn+1 consistent, if it agrees with the examples e0, . . . , en+1. But since the learner
has not memorised e0, . . . , en, it might be considered natural to just demand
that hn+1 agrees with the current example en+1. This is justified from a rather
local perspective. Similarly, when defining conservativeness from a global point of
view, one might demand that hn+1 = hn in case hn does not contradict any of the
examples e0, . . . , en+1, whereas a local variant of conservativeness would mean to
require that hn+1 = hn in case hn does not contradict the current example en+1.

Towards a Better Understanding of Incremental Learning 171

Note that local consistency is a weaker requirement than global consistency,
whereas local conservativeness is stronger than global conservativeness.

In the present paper, we restrict our focus on recursive languages as target
concepts [1, 13]. In particular, the target classes are required to be indexable,
i. e., there exist algorithms deciding the membership problem uniformly for all
possible target languages. This restriction is motivated by the fact that many
classes of target concepts relevant for typical learning tasks are indexable.

The paper is structured as follows. In Section 2, we provide the definitions
and notations necessary for our formal analysis. Then Section 3 is concerned
with a case study of iterative learning of regular erasing pattern languages – a
quite natural and simple to define indexable class which has shown to be suitable
for representing target concepts in many application scenarios. This case study
shows how consistency and conservativeness may affect the learnability of such
pattern languages in case quite natural hypothesis spaces are chosen for learn-
ing. Section 4 focuses on consistency in iterative learning. It has turned out,
that iterative learners can be normalised to work in a locally consistent way,
whereas global consistency is a constraint reducing the capabilities of iterative
learners. Both results hold for learning from positive examples as well as for
learning from both positive and negative examples. Section 5 then is concerned
with conservativeness. Here we show that, in the scenario of learning from only
positive examples, the effects of global conservativeness demands and local con-
servativeness demands are equal, as far as the capabilities of iterative learners are
concerned. In contrast to that there are classes which can be learned iteratively
from positive and negative examples by a globally conservative learner, but not
in a locally conservative manner. Concerning the effect of weak conservativeness
demands (i. e., of global conservativeness), we can show that they strictly reduce
the capabilities of iterative learners which are given both positive and negative
examples as information. However, the corresponding comparison in the case of
learning from only positive examples is still open. In our point of view, not only
the mere results presented here, but in particular the proof constructions and
separating classes give an impression of characteristic methods of iterative learn-
ing and characteristic properties of iteratively learnable classes, even though we
cannot provide a formal characterisation yet. Section 6 contains our conclusions.

2 Preliminaries

Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings over Σ, and
Σ+ its subset excluding the empty string. |w| denotes the length of a string w.
Any non-empty subset of Σ∗ is called a language. For any language L, co(L) =
Σ∗ \ L. N is the set of all natural numbers. If L is a language, then any infinite
sequence t = (wj)j∈N with {wj | j ∈ N} = L is called a text for L. Moreover,
any infinite sequence i = ((wj , bj))j∈N over Σ∗ × {+,−} such that {wj | j ∈
N} = Σ∗, {wj | j ∈ N, bj = +} = L, and {wj | j ∈ N, bj = −} = co(L) is
referred to as an informant for L. Then, for any n ∈ N, t[n] and i[n] denote the
initial segment of t and i of length n + 1, while t(n) = wn and i(n) = (wn, bn).

172 S. Jain, S. Lange, and S. Zilles

Furthermore, content(t[n]) = {wj | j ≤ n}. Let content(i[n]), content+(i[n]),
and content−(i[n]) denote the sets {(wj , bj) | j ≤ n}, {wj | j ≤ n, bj = +}, and
{wj | j ≤ n, bj = −}.

A family (Lj)j∈N of languages is called an indexing for a class C of recursive
languages, if C = {Lj | j ∈ N} and there is a recursive function f such that
Lj = {w ∈ Σ∗ | f(j, w) = 1} for all j ∈ N. C is called an indexable class (of
recursive languages), if C possesses an indexing.

In our proofs, we will use a fixed Gödel numbering (ϕj)j∈N of all (and only all)
partial recursive functions over N as well as an associated complexity measure
(Φj)j∈N, see [3]. Then, for k, x ∈ N, ϕk is the partial recursive function computed
by program k and we write ϕk(x) ↓ (ϕk(x) ↑), if ϕk(x) is defined (undefined).

2.1 Learning from Text

Let C be an indexable class, H = (Lj)j∈N any indexing of some C′ ⊇ C (called
hypothesis space), and L ∈ C. An inductive inference machine (IIM for short)
M is an algorithmic device that reads longer and longer initial segments σ of a
text and outputs numbers M(σ) as its hypotheses. An IIM M returning some j
is construed to hypothesise the language Lj. The following definition of learning
from positive data is based on Gold [6]. Given a text t for L, M learns L from
t with respect to H, if (a) the sequence of hypotheses output by M , when fed t,
stabilises on a number j (* i. e., past some point M always outputs the hypothesis
j *) and (b) this number j fulfils Lj = L.

An iterative inductive inference machines is only allowed to use its previous
hypothesis and the current string in a text for computing its current hypothesis.
More formally, an iterative IIM M is an algorithmic device that maps elements
from N∪{init}×Σ∗ into N, where init denotes a fixed initial ‘hypothesis’ which
the IIM may never output. Let t = (wn)n∈N be any text for some language L ⊆
Σ∗. Then we denote by (M [init , t[n]])n∈N the sequence of hypotheses generated
by M when processing t, i. e., M [init , w0] = M(init , w0) and, for all n ∈ N,
M [init , t[n + 1]] = M(M [init , t[n]], wn+1).

Definition 1. [12] Let C be an indexable class, H = (Lj)j∈N a hypothesis space,
and L ∈ C. An iterative IIM M learns L from text with respect to H iff, for any
text t = (wn)n∈N for L, the sequence (M [init , t[n]])n∈N stabilises on a number j
with Lj = L. Moreover, M learns C from text with respect to H, if it identifies
every L′ ∈ C from text with respect to H. Finally, ItTxt denotes the collection of
all indexable classes C′ for which there is a hypothesis space H′ and an iterative
IIM learning C′ from text with respect to H′.

In the definition of consistent learning, a hypothesis of a learner is said to be
consistent, if it reflects the data it was built upon correctly. Since an iterative IIM
M , when processing some text t, is only allowed to use its previous hypothesis,
say Lj′ , and the current string v in t for computing its current hypothesis Lj ,
it is quite natural to distinguish two variants of consistent learning. In the first
case, it is demanded that Lj contains all elements of t seen so far, while, in the
second case, it is only required that Lj contains the string v.

Towards a Better Understanding of Incremental Learning 173

Definition 2. Let C be an indexable class, H = (Lj)j∈N a hypothesis space, and
M an iterative IIM. M is globally (locally) consistent for C iff content(t[n]) ⊆
LM [init ,t[n]] (t(n) ∈ LM [init ,t[n]]) for every text segment t[n] for some L ∈ C. Fi-
nally, ItGConsTxt (ItLConsTxt) denotes the collection of all indexable classes C′
for which there is a hypothesis space H′ and an iterative IIM which is globally
(locally) consistent for C′ and learns C′ from text with respect to H′.

Finally we consider conservative learning. Informally speaking, a conservative
learner maintains its current hypothesis as long as the latter does not contradict
any data seen. Hence, whenever a conservative IIM changes its recent hypothesis,
this must be justified by data having occurred which prove an inconsistency of
its recent hypothesis. Similarly to the case of consistent iterative learning, it is
quite natural to distinguish two variants of conservativeness.

Definition 3. Let C be an indexable class, H = (Lj)j∈N be a hypothesis space,
and M be an iterative IIM. M is globally (locally) conservative for C iff, for
every text segment t[n + 1] for some L ∈ C, M [init , t[n + 1]] �= M [init , t[n]]
implies content(t[n+ 1]) �⊆ LM [init ,t[n]] (implies t(n+1) /∈ LM [init ,t[n]]). Finally,
ItGConvTxt (ItLConvTxt) denotes the collection of all indexable classes C′ for
which there is a hypothesis space H′ and an iterative IIM which is globally (lo-
cally) conservative for C′ and learns C′ from text with respect to H′.

Note that we allow a mind change from init after the first input data is received.

2.2 Learning from Informant

For all variants of ItTxt considered so far we define corresponding models cap-
turing the case of learning from informant. Now an iterative IIM M maps N×
(Σ∗×{+,−}) into N. Let i = (wn, bn)n∈N be any informant for some language L,
and let init be a fixed initial hypothesis. Then (M [init , i[n]])n∈N is the sequence
of hypotheses by M processing i, i. e., M [init , (w0, b0)] = M(init , (w0, b0)) and,
for all n ∈ N, M [init , i[n + 1]] = M(M [init , i[n]], (wn+1, bn+1)).

Definition 4. [12] Let C be an indexable class, H = (Lj)j∈N a hypothesis space,
and L ∈ C. An iterative IIM M learns L from informant with respect to H, iff for
every informant i for L, the sequence (M [init , i[n]])n∈N stabilises on a number
j with Lj = L. Moreover, M learns C from informant with respect to H, if M
learns every L′ ∈ C from informant with respect to H.

The notion ItInf is defined similarly to the text case. Now also the consistency
and conservativeness demands can be formalised. For instance, for consistency,
let C be an indexable class, H = (Lj)j∈N a hypothesis space, and M an iterative
IIM. M is globally (locally) consistent for C iff content+(i[n]) ⊆ LM [init ,i[n]]
and content−(i[n]) ⊆ co(LM [init ,i[n]]) (b = + for w ∈ LM [init ,i[n]] and b = −
for w /∈ LM [init ,i[n]]) for every informant segment i[n] for some L ∈ C, where
i(n) = (w, b). Finally, the definitions of ItGConsInf , ItLConsInf , ItGConvInf ,
ItLConvInf can be adapted from the text case to the informant case.

174 S. Jain, S. Lange, and S. Zilles

3 A Case Study: The Regular Erasing Pattern Languages

Let Σ be any fixed finite alphabet. Let X = {x1, x2, . . . } be an infinite set of
variables, disjoint with Σ. A regular pattern α is a string from (Σ ∪X)+ which
contains every variable at most once. Let α be a regular pattern. Then Lε(α),
the regular erasing pattern language generated by α, contains all strings in Σ∗

that can be obtained by replacing the variables in α by strings from Σ∗, see,
e. g., [10]. Note that Lε(α) constitutes a regular language. Subsequently, let Crp
denote the collection of all regular erasing pattern languages.

Our first result can be achieved by adapting a standard idea, see, e. g., [4].

Theorem 1. There is a learner witnessing both Crp ∈ ItGConsTxt and Crp ∈
ItLConvTxt.

Sketch of the proof. Let (Dj)j∈N be the canonical enumeration of all finite subsets
of N and (Lε(αj))j∈N be an effective, repetition-free indexing of Crp. Moreover
let L′

j =
⋂

z∈Dj
Lε(αz). Hence (L′

j)j∈N is an indexing comprising the class Crp.
The proof is essentially based on the following fact.
Fact 1. There is an algorithm A which, given any string w ∈ Σ+ as input,
outputs an index j such that Dj = {z ∈ N | w ∈ Lε(αz)}.
A learner M witnessing Crp ∈ ItGConsTxt and Crp ∈ ItLConvTxt with respect
to (L′)j∈N may simply work as follows:

Initially, if the first string w appears, M starts its subroutine A, determines
j = A(w), and guesses the language L′

j , i. e., M(init , w) = j. Next M , when
receiving a new string v, refines its recent hypothesis, say j′, as follows. M
determines the canonical index j of the set {z | z ∈ Dj′ , v ∈ Lε(αz)} ⊆ Dj′ and
guesses the languages L′

j, i. e., M(j′, v) = j.
It is not hard to see that M learns as required. �

Although the iterative learner M used in this proof is locally conservative and
globally consistent, M has the disadvantage of guessing languages not contained
in the class of all regular erasing pattern languages. At first glance, it might seem
that this weakness can easily be compensated, since the final guess returned by
M is always a regular erasing pattern language and, moreover, one can effec-
tively determine whether or not the recent guess of M equals a regular erasing
pattern language. Surprisingly, even under this quite ‘perfect’ circumstances, it
is impossible to replace M by an iterative, locally conservative, and globally
consistent learner for Crp that hypothesises languages in Crp, exclusively.

Theorem 2. Let card(Σ) ≥ 2. Let (Lj)j∈N be any indexing of Crp. Then there
is no learner M witnessing both Crp ∈ ItGConsTxt and Crp ∈ ItLConvTxt with
respect to (Lj)j∈N.

Proof. Let {a, b} ⊆ Σ. Assume to the contrary that there is an iterative learnerM
which learns Crp locally conservatively and globally consistently, hypothesising
only regular erasing pattern languages. Consider M for any text of some L ∈
Crp with the initial segment σ = aba, aab. Since M must avoid overgeneralised

Towards a Better Understanding of Incremental Learning 175

hypotheses, there are only two possible semantically different hypotheses which
are globally consistent with σ, namely x1abx2 and ax1ax2. Distinguish two cases:

Case (a). LM [init ,σ] = Lε(x1abx2).
Consider M processing σ1 = σab, aa and σ2 = σaa. Since ab ∈ Lε(x1abx2)

and M is locally conservative for Crp, we obtain M [init , σab] = M [init , σ]. For
reasons of global consistency, LM [init ,σ1] = Lε(ax1). Now, since M [init , σab] =
M [init , σ], this yields LM [init ,σ2] = Lε(ax1). However, σ2 can be extended to a
text for Lε(ax1ax2), on which M will fail to learn locally conservatively, since
M [init , σ2] overgeneralises the target. This contradicts the assumptions on M .

Case (b). LM [init ,σ] = Lε(ax1ax2).
Here a similar contradiction can be obtained for M processing σ1 = σaa, ab

and σ2 = σab.
Both cases yield a contradiction and thus the theorem is verified. �

However, as Theorems 3 and 4 show, each of our natural requirements, in its
stronger formulation, can be achieved separately, if an appropriate indexing of
the regular erasing pattern languages is used as a hypothesis space. We provide
the proof only for the first result; a similar idea can be used also for Theorem 4.

Theorem 3. There is an indexing (L∗
j)j∈N of Crp and a learner M witnessing

Crp ∈ ItLConvTxt with respect to (L∗
j)j∈N.

Proof. As in the proof of Theorem 1, let (Dj)j∈N be the canonical enumeration
of all finite subsets of N and (Lε(αj))j∈N an effective, repetition-free indexing of
Crp. Moreover let L′

j =
⋂

z∈Dj
Lε(αz) for all j ∈ N. Hence (L′

j)j∈N is an indexing
comprising the class Crp. The proof is based on the following fact.

Fact 2. There is an algorithm A′ which, given any index j as input, outputs an
index k with Lε(αk) = L′

j, if such an index exists, and ’no’, otherwise.

(* Since every regular erasing pattern language is a regular language and both
the inclusion problem as well as the equivalence problem for regular languages
are decidable, such an algorithm A′ exists. *)

The required iterative learner uses the algorithm A′ and the iterative learner
M from the demonstration of Theorem 1 as its subroutines. Let (L∗

〈k,j〉)k,j∈N be
an indexing of Crp with L∗

〈k,j〉 = Lε(αk) for all k, j ∈ N. We define an iterative
learner M ′ for Crp that uses the hypothesis space (L∗

〈k,j〉)k,j∈N.
Initially, if the first string w appears, M ′ determines the canonical index

k of the regular erasing pattern language Lε(w) as well as j = M(init , w),
and outputs the hypothesis 〈k, j〉, i. e., M ′(init , w) = 〈k, j〉. Next M ′, when
receiving a string v, refines its recent hypothesis, say 〈k′, j′〉, as follows. First,
if v ∈ L∗

〈k′,j′〉, M
′ repeats its recent hypothesis, i. e., M ′(〈k′, j′〉, v) = 〈k′, j′〉.

(* Note that j′ = M(j′, v), too. *) Second, if v /∈ L∗
〈k′,j′〉, M

′ determines j =
M(j′, v) and runs A′ on input j. If A′ returns some k ∈ N, M ′ returns 〈k, j〉,
i. e., M ′(〈k′, j′〉, v) = 〈k, j〉. If A′ returns ’no’, M ′ determines the canonical
index k of the regular erasing pattern language Lε(v) and returns 〈k, j〉, i. e.,
M ′(〈k′, j′〉, v) = 〈k, j〉.

176 S. Jain, S. Lange, and S. Zilles

By definition, M ′ is an iterative and locally conservative learner. Let t be any
text for any L ∈ Crp. Since M learns L, there is some n such that M [init , t[n]] = j
with L′

j = L. By definition, for 〈k, j〉 = M ′[init , t[n]], we have Lε(αk) = L′
j . Thus

L∗
〈k,j〉 = Lε(αk). Since M ′ is a locally conservative learner, M ′ learns L, too. �

Theorem 4. There is an indexing (Lj)j∈N of Crp and a learner M witnessing
Crp ∈ ItGConsTxt with respect to (Lj)j∈N.

This case study shows that the necessity of auxiliary hypotheses representing lan-
guages outside the target class may depend on whether both global consistency
and local conservativeness or only one of these properties is required. In what
follows, we analyse the impact of consistency and conservativeness separately in
a more general context, assuming that auxiliary hypotheses are allowed.

4 Incremental Learning and Consistency

This section is concerned with the impact of consistency demands in iterative
learning. In the case of learning from text, the weaker consistency demand,
namely local consistency, does not restrict the capabilities of iterative learners.

Theorem 5. ItLConsTxt = ItTxt.

Proof. By definition, ItLConsTxt ⊆ ItTxt . To prove ItTxt ⊆ ItLConsTxt , fix
an indexable class C ∈ ItTxt . Let (Lj)j∈N be an indexing comprising C and M
an iterative learner for C with respect to (Lj)j∈N.

The required learner M ′ uses the indexing (L′
〈j,w〉)j∈N,w∈Σ∗ , where L′

〈j,w〉 =
Lj ∪{w} for all j ∈ N, w ∈ Σ∗. Initially, M ′(init , w) = 〈j, w〉 for j = M(init , w).
Next M ′, upon a string v, refines its recent hypothesis, say 〈j′, w′〉, as follows.
First, M ′ determines j = M(j′, v). Second, if v ∈ Lj, M returns 〈j, w′〉; other-
wise, it returns 〈j, v〉. Obviously, M ′ witnesses C ∈ ItLConsTxt . �

In contrast to that, requiring local consistency results in a loss of learning po-
tential, as the following theorem shows.

Theorem 6. ItGConsTxt ⊂ ItTxt.

Proof. By definition, ItGConsTxt ⊆ ItTxt . It remains to provide a separating
class C that witnesses ItTxt \ ItGConsTxt �= ∅.

Let Σ = {a, b} and let (Aj)j∈N be the canonical enumeration of all finite
subsets of {a}+. Now C contains the language L = {a}+ and, for all j ∈ N, the
finite language Lj = Aj ∪ {bz | z ≤ j}.
Claim 1. C ∈ ItTxt .

The required iterative learner M may work as follows. As long as exclusively
strings from {a}+ appear, M just guesses L. If a string of form bj appears for the
first time, M guesses Lj . Past that point, M , when receiving a string v, refines
its recent guess, say Lk, as follows. If v ∈ L or v = bz for some z ≤ k, M repeats
its guess Lk. If v = bz for some z > k, M guesses Lz.

Towards a Better Understanding of Incremental Learning 177

It is not hard to verify that M is an iterative learner that learns C as required.
Claim 2. C /∈ ItGConsTxt .

Suppose to the contrary that there is an indexing (L′
j)j∈N comprising C and

a learner M witnessing C ∈ ItGConsTxt with respect to (L′
j)j∈N.

Consider M when processing the text t = a1, a2, . . . for L. Since M is a learner
for C, there has to be some n such that M [init , t[n]] = M [init , t[n + m]] for all
m ≥ 1. (* Note that M [init , t[n]] = M [init , t[n]az] for all z > n + 1. *)

Now let j be fixed such that Aj = content(t[n]) = {a1, . . . , an+1}. Consider
M when processing any text t̂ for Lj with t̂[n] = t[n]. Since M is a learner for
C, there is some n′ > n such that content(t̂[n′]) = Lj as well as L′

k = Lj for k =
M [init , t̂[n′]]. (* Note that there is some finite sequence σ with t̂[n′] = t[n]σ. *)

Next let j′ > j be fixed such that Aj ⊂ Aj′ . Moreover fix any string az in
Aj′ \ Aj . (* Note that z > n + 1 and az /∈ Lj . *) Consider M when processing
any text t̃ for the language Lj′ having the initial segment t̃[n′ + 1] = t[n]azσ.
Since M [init , t[n]] = M [init , t[n]az], one obtains M [init , t̃[n+1]] = M [init , t̂[n]].
Finally since M is an iterative learner, t̂[n′] = t̂[n]σ, and t̃[n′ + 1] = t̃[n + 1]σ,
one may conclude that M [init , t̃[n′ + 1]] = M [init , t̂[n′]] = k. But L′

k = Lj , and
therefore az /∈ L′

k. The latter implies content(t̃[n′ + 1]) �⊆ L′
k, contradicting the

assumption that M is an iterative and globally consistent learner for C. �

In the case of learning from informant, the results obtained are parallel to those
in the text case. Theorem 7 can be verified similarly to Theorem 5.

Theorem 7. ItLConsInf = ItConsInf .

Considering the stronger consistency requirement, there are even classes learn-
able iteratively from text, but not globally consistently from informant.

Theorem 8. ItTxt \ ItGConsInf �= ∅.

Proof. It suffices to provide a class C ∈ ItTxt \ ItGConsInf .
Let Σ = {a, b} and let (Aj)j∈N be the canonical enumeration of all finite

subsets of {a}+. Now C contains the language L = {a}+ and, for all j, k ∈ N,
the finite language L〈j,k〉 = Aj ∪Ak ∪ {bj, bk}.
Claim 1. C ∈ ItTxt .

The required iterative learner M may work as follows. As long as only strings
from {a}+ appear, M guesses L. If a string of form bz appears for the first time,
M guesses L〈z,z〉. Past that point, M refines its recent guess, say L〈j′,k′〉, when
receiving a string v as follows. If j′ = k′ and v = bz with z �= j′, M guesses
L〈j′,z〉. In all other cases, M repeats its guess L〈j′,k′〉.

It is not hard to verify that M is an iterative learner that learns C as required.
Claim 2. C /∈ ItGConsInf .

Suppose to the contrary that there is an indexing (L′
j)j∈N comprising C and

a learner M witnessing C ∈ ItGConsInf with respect to (L′
j)j∈N.

Consider an informant i = ((wn, bn)n∈N) for L such that |wn| ≤ n for all
n ∈ N. Since M is a learner for C, there has to be some n such that M [init , i[n]] =
M [init , i[n + m]] for all m ≥ 1. (* Note that M [init , i[n]] = M [init , i[n](az,+)]
for all z > n + 1. *)

178 S. Jain, S. Lange, and S. Zilles

Let j be fixed such that content+(i[n]) ⊆ Aj and bj /∈ content−(i[n]). Now
consider M when processing an informant ı̂ for L〈j,j〉 with ı̂[n] = i[n]. Since M
is a learner for C, there has to be some n′ > n such that content (̂ı[n′]) = L〈j,j〉
and L′

k = L〈j,j〉 for k = M [init , ı̂[n′]]. (* Note that there is some finite sequence
σ such that ı̂[n′] = i[n]σ. *)

Now let k′ > j be fixed such that Aj ⊂ Ak′ , content−(̂ı[n]) ∩ Ak′ = ∅, and
bk′

/∈ content−(̂ı[n]). Let az be any string in Ak′ \Aj. (* Note that z > n+1 and
az /∈ L〈j,j〉. *) Consider M when processing any informant ı̃ for the language
L〈j,k′〉 with ı̃[n′+1] = i[n](az,+)σ. Since M [init , i[n]] = M [init , i[n](az,+)], one
obtains M [init , ı̃[n + 1]] = M [init , ı̂[n]]. Finally since M is an iterative learner,
ı̂[n′] = ı̂[n]σ, and ı̃[n′ +1] = ı̃[n+1]σ, one may conclude that M [init , ı̃[n′ +1]] =
M [init , ı̂[n′]] = k. But L′

k = L〈j,j〉, and therefore az /∈ L′
k. The latter implies

content+(̃ı[n′ + 1]) �⊆ L′
k, contradicting the assumption that M is an iterative

and globally consistent learner for C. �

Obviously ItTxt ⊆ ItInf , and thus we obtain the following corollary.

Corollary 1. ItGConsInf ⊂ ItInf .

5 Incremental Learning and Conservativeness

This section deals with conservativeness in the context of iterative learning. Here
the results for learning from text differ from those for the informant case.

5.1 The Case of Learning from Text

Let us first discuss the different conservativeness definitions in the context of
learning from positive examples only. By definition, local conservativeness is a
stronger demand, since the learner is required to maintain a hypothesis if it is
consistent with the most recent piece of information, even if it contradicts some
previously processed examples. However, it turns out that this demand does not
have any negative effect on the capabilities of iterative learners. Intuitively, a
globally conservative learner may change mind depending on inconsistency with
only a limited set of examples, which can be coded within the hypothesis.

Theorem 9. ItGConvTxt = ItLConvTxt.

Proof. By definition, ItLConvTxt ⊆ ItGConvTxt . Fix an indexable class C ∈
ItGConvTxt ; let (Lj)j∈N be an indexing and M an iterative IIM identifying
C globally conservatively with respect to (Lj)j∈N. It remains to prove C ∈
ItLConvTxt . For that purpose, we need the following notion and technical claim.
Notion. For any text t and any n ∈ N, let mc(t[n],M) denote the set {t(0)} ∪
{t(m) | 1 ≤ m ≤ n and M [init , t[m − 1]] �= M [init , t[m]]} of all strings in
content(t[n]), which force M to change its mind when processing t[n].
Technical claim. Let L ∈ C, t a text for L, and n ∈ N. Let j = M [init , t[n]]. If
t(n + 1) ∪mc(t[n],M) ⊆ Lj, then M [init , t[n + 1]] = M [init , t[n]].

Towards a Better Understanding of Incremental Learning 179

Proof. Let W = content(t[n + 1]) \ Lj . As t(n + 1) ∪ mc(t[n],M) ⊆ Lj , then
M [init , t[m + 1]] = M [init , t[m]] for all m < n with t(m + 1) ∈ W . Now let τ
be the subsequence of t[n] obtained by deleting all w ∈ W from t[n]. Obviously,
M [init , τ] = M [init , t[n]] and mc(t[n],M) ⊆ content(τ) ⊆ Lj . This implies

M [init , t[n + 1]] = M [init , τt(n + 1)] = M [init , τ] = M [init , t[n]] ,

because M is globally conservative for L. (QED, technical claim).
Define an indexing (L′

j)j∈N by L′
2〈j,k〉 = Lj and L′

2〈j,k〉+1 = ∅ for all j, k ∈ N.
We now define an IIM M ′ (witnessing C ∈ ItLConvTxt using (L′

j)j∈N), such
that, on any finite text segment σ for some L ∈ C, the following invariant holds:

M ′[init , σ] = 2〈M [init , σ], k〉+ y for some k ∈ N, y ∈ {0, 1}, such that
– Dk = mc(σ,M) (* and thus Dk ⊆ content(σ) *).
– If y = 0, then Dk ⊆ LM [init ,σ].

The reader may check that this invariant holds, if M ′ is defined as follows:
Definition of M ′(init , w), for w ∈ Σ∗: Let j = M(init , w).

– If w ∈ Lj , let M ′(init , w) = 2〈j, k〉, where Dk = {w}.
– If w /∈ Lj , let M ′(init , w) = 2〈j, k〉+ 1, where Dk = {w}.

Definition of M ′(2〈j, k〉+ 1, w), for w ∈ Σ∗, j, k ∈ N: Let j′ = M(j, w).

– If j = j′ and Dk ⊆ Lj , let M ′(2〈j, k〉+ 1, w) = 2〈j, k〉.
– If j = j′ and Dk �⊆ Lj , let M ′(2〈j, k〉+ 1, w) = 2〈j, k〉+ 1.
– If j �= j′, let M ′(2〈j, k〉+ 1, w) = 2〈j′, k′〉+ 1, where Dk′ = Dk ∪ {w}.

Definition of M ′(2〈j, k〉, w), for w ∈ Σ∗, j, k ∈ N: Let j′ = M(j, w).

– If w /∈ Lj and j = j′, let M ′(2〈j, k〉, w) = 2〈j, k〉+ 1.
– If w /∈ Lj and j �= j′, let M ′(2〈j, k〉, w) = 2〈j′, k′〉+1, where Dk′ = Dk∪{w}.
– If w ∈ Lj (* by the invariant, there is some text segment σ with M [init , σ] =

j and Dk = mc(σ,M) ⊆ Lj ; hence Dk∪{w} ⊆ Lj and j = j′ by the technical
claim *), let M ′(2〈j, k〉, w) = 2〈j, k〉.

By definition, M ′ is locally conservative with respect to (L′
j)j∈N. Since M is

globally conservative for C with respect to (Lj)j∈N and because of the invariant,
it is not hard to verify that M ′ learns C iteratively. Thus C ∈ ItLConvTxt . �

So local and global conservativeness are equal constraints for iterative text learn-
ers. Whether they reduce the capabilities of iterative text learners in general,
i. e., whether ItGConvTxt and ItTxt coincide, remains an open question.

5.2 The Case of Learning from Informant

First, comparing the two versions of conservativeness, the informant case yields
results different from those in the text case, namely that globally conservative
iterative learners cannot be normalised to being locally conservative. In particu-
lar, the property that globally conservative learners can code all previously seen
examples, for which their current hypothesis is inconsistent, no longer holds in
the informant case.

180 S. Jain, S. Lange, and S. Zilles

Theorem 10. ItLConvInf ⊂ ItGConvInf .

Proof. By definition, ItLConvInf ⊆ ItGConvInf . Thus it remains to provide a
separating class C that witnesses ItGConvInf \ ItLConvInf �= ∅.

Let Σ = {a} and (Dj)j∈N the canonical enumeration of all finite subsets of
{a}+. Assume D0 = ∅. For all j ∈ N, set Lj = {a0} ∪Dj and L′

j = {a}+ \Dj .
Let C be the collection of all finite languages Lj and all co-finite languages L′

j .
Claim 1. C ∈ ItGConvInf .

For all j, k, z ∈ N, let H2〈j,k,z〉 = {a}+ \ {az} and H2〈j,k,z〉+1 = {az}. Now
the required iterative learner M , processing an informant i = ((wn, bn))n∈N for
some L ∈ C may work as follows.

(i) As long as neither (a0,+) nor (a0,−) appear, M guesses — depending on
whether or not (w0, b0) = (az ,+) or (w0, b0) = (az,−) — in the first case
H2〈j,k,z〉, in the second case H2〈j,k,z〉+1, where Dj = content+(i[n]) and
Dk = content−(i[n]) (* The recent guess of M is inconsistent, so M can
change its mind without violating the global conservativeness demand. *)

(ii) If (a0,+) or (a0,−) appears for the first time, the following cases will be
distinguished. If w0 = a0 and b0 = +, M guesses L0. If w0 = a0 and
b0 = −, M guesses L′

0. Otherwise, let j′ = 2〈j, k, z〉+ y, y ∈ {0, 1}, denote
the recent guess of M . If (a0,+) appears, M ′ guesses the finite language
Lj. If (a0,−) appears, M ′ guesses the co-finite language L′

k.
(iii) Then M refines its recent guess as follows. If a positive example (az,+) ap-

pears, the recent guess of M is Lj′ , and az /∈ Lj′ , M guesses Lj = Lj′∪{az}.
If a negative example (az ,−) appears, the recent guess of M is L′

k′ , and
az ∈ L′

k′ , M guesses L′
k = L′

k′ \ {az}. Else M repeats its recent guess.

It is not hard to verify that M is an iterative learner that learns C as required.
Claim 2. C /∈ ItLConvInf .

Suppose to the contrary that there is an indexing (L∗
j)j∈N comprising C and

a learner M which locally conservatively identifies C with respect to (L∗
j)j∈N.

Let j = M(init , (a,+)). We distinguish the following cases:
Case 1. L∗

j ∩ {a}+ is infinite.
Choose ar ∈ L∗

j with r > 1 and L = {a0, a1, ar}. Consider M on the infor-
mant i = (a,+), (ar,+), (a0,+), (a2,−), . . . , (ar−1,−), (ar+1,−), (ar+2,−), . . .
for L. As M learns C, there is an n ≥ 2 with M [init , i[n]] = M [init , i[n +
m]] for all m ≥ 1. (* M [init , i[n](as,−)] = M [init , i[n]] for all as with as /∈
(content+(i[n]) ∪ content−(i[n])). *) Let as be any string in L∗

j with s > r + 1,
as /∈ (content+(i[n]) ∪ content−(i[n])). As Lj ∩ {a}+ is infinite, such as exists.
(* There is some σ with i = (a,+), (ar,+)σ(as−1,−), (as,−), (as+1,−), . . . *)

Next let ı̂ = (a1,+), (ar,+), (as,+)σ(as−1,−), (as+1,−), (as+2,−), . . . Con-
sider M when processing the informant ı̂ for L′ = {a0, a1, ar, as}. Since M is
locally conservative and as ∈ L∗

j , M [init , ı̂[2]] = M [init , i[1]]. As M is an iter-
ative learner, M [init , ı̂[n + 1]] = M [init , i[n]]. Past step n + 1, M receives only
negative examples (az,−) with az /∈ (content+(i[n])∪ content−(i[n])). Hence M
converges on ı̂ to the same hypothesis j as on i, namely to j = M [init , i[n]].
Finally because L �= L′, M cannot learn both finite languages L and L′.

Towards a Better Understanding of Incremental Learning 181

Case 2. L∗
j ∩ {a}+ is finite.

An argumentation similar to that used in Case 1 shows that M must fail to
learn some co-finite language in C. We omit the relevant details. �

The observed difference in the above theorem can now even be extended to
a proper hierarchy of iterative learning from informant; globally conservative
learners in general outperform locally conservative ones, but are not capable
of solving all the learning tasks a general iterative learner can cope with. So
there are classes in ItInf which cannot be learned by any iterative, globally
conservative learner.

Theorem 11. ItGConvInf ⊂ ItInf .

Proof. By definition, ItGConvInf ⊆ ItInf . Thus it remains to provide a sepa-
rating class C that witnesses ItInf \ ItGConvInf �= ∅.

Let (Dj)j∈N be the canonical enumeration of all finite subsets of N.
Let C =

⋃
k∈N

Ck, where Ck are defined below based on following cases.
Case (a). If ϕk(k) ↑, then Ck contains just one language, namely Lk = {ak}.
Case (b). If ϕk(k) ↓, then Ck contains infinitely many languages. Let s =

Φk(k). For all j ∈ N, Ck contains the language L〈k,j〉 = Lk∪{bs}∪{cs+z | z ∈ Dj}
as well as the language L′

〈k,j〉 = Lk∪{cs+z | z �∈ Dj}. (* Note that L〈k,j〉 contains
a finite subset of {c}∗, whereas L′

〈k,j〉 contains a co-finite subset of {c}∗. *)
It is not hard to verify that C constitutes an indexable class.

Claim 1. C ∈ ItInf .
Let i = ((wn, bn))n∈N be an informant for some L ∈ C. A corresponding

iterative learner M may be informally defined as follows:

(i) As long as no positive example (ak,+) appears, M ′ encodes in its guess all
examples seen so far.

(ii) If some positive example (ak,+) appears, M ′ tests whether or not Φk(k) ≤
|w|, where w is the longest string seen so far. In case that ϕk(k) ↓ has
been verified, M ′ guesses Lk, where in its hypothesis all examples seen so
far are encoded. Subsequently, M ′ behaves according to (iv). In case that
Φk(k) > |w|, M ′ guesses Lk, where the encoded examples can be simply
ignored. Afterwards, M ′ behaves according to (iii).

(iii) As long as M ′ guesses Lk, M ′ uses the recent example (wn, bn) to check
whether or not Φk(k) ≤ |wn|. In the positive case, M ′ behaves as in (iv).
Else M ′ repeats its recent guess, without encoding any further example.

(iv) Let s = Φk(k). As long as (bs,+) and (bs,−) neither appear nor belong to
the examples encoded in the recent guess, M ′ adds the new example into
the encoding of examples in the recent guess. If (bs,+) (or (bs,−)) appears
or is encoded, M ′ guesses a language L〈k,j〉 (or L′

〈k,j〉, respectively) that is
consistent with all examples encoded. Past that point, M ′ works like the
iterative learner M used in the proof of Theorem 10, Claim 1.

It is not hard to see that M ′ is an iterative learner for C.

182 S. Jain, S. Lange, and S. Zilles

Claim 2. C �∈ ItGConvInf .
Suppose the converse. That is, there is an indexing (L∗

j)j∈N comprising C and
an iterative learner M which globally conservatively identifies C with respect to
(L∗

j)j∈N. We shall show that M can be utilised to solve the halting problem.

Algorithm A: Let k be given. Let i = (wn, bn)n∈N be a repetition-free informant
for Lk with w0 = ak and b0 = + such that, for all n ∈ N, wm = bn implies
m < n. For m = 0, 1, 2, . . . test in parallel whether (α1) or (α2) happens.
(α1) Φk(k) ≤ m.
(α2) An index jm = M(init , i[m]) is output such that content+(i[m]) ⊆ L∗

jm

and content−(i[m]) ∩ L∗
jm

= ∅.
If (α1) happens first, output “ϕk(k) ↓.” Otherwise, i.e., (α2) happens first,
output “ϕk(k) ↑.”

Fact 1. On every input k, algorithm A terminates.
It suffices to show that either (α1) or (α2) happens. Suppose, (α1) does not

happen, and thus ϕk(k) ↑. Hence, Lk ∈ Ck ⊆ C. Consequently, M , when process-
ing the informant i for Lk, eventually returns a hypothesis jm = M(init , i[m])
such that L∗

jm
= Lk. Thus, (α2) must happen.

Fact 2. Algorithm A decides the halting problem.
Obviously, if (α1) happens then ϕk(k) is indeed defined. Suppose (α2) hap-

pens. We have to show that ϕk(k) ↑. Assume ϕk(k) ↓. Then, Φk(k) = s for some
s ∈ N. Since (α2) happens, there is an m < s such that jm = M(init , i[m])
as well as content+(i[m]) ⊆ L∗

jm
and content−(i[m]) ∩ L∗

jm
= ∅. (* Note that

neither (bs,+) nor (bs,−) appears in the initial segment i[m]. *)
Now, similarly to the proof of Theorem 10, Claim 2 one has to distinguish two

cases: (i) L∗
jm

contains infinitely many strings from {c}∗ and (ii) L∗
jm

contains
only finitely many strings of from {c}∗. In both cases, an argumentation similar
to that used in the proof of Theorem 10, Claim 2 can be utilised to show that M
fails to learn at least one language in Ck which contain a finite (co-finite) subset
of {c}∗. We omit the relevant details. Since M is supposed to learn C, the latter
contradicts our assumption that ϕk(k) ↓, and thus Fact 2 follows.

Since the halting problem is undecidable, C �∈ ItGConvInf . �

6 Some Concluding Remarks

We have studied iterative learning with two versions of consistency and conser-
vativeness. In fact, a third version is conceivable. Note that an iterative learner
M may use a redundant hypothesis space for coding in its current hypothesis all
examples, upon which M has previously changed its guess. So one may think of
mind changes as ‘memorising examples’ and repeating hypotheses as ‘forgetting
examples’. One might call a hypothesis consistent with the examples seen, if
it does not contradict the ‘memorised’ examples, i. e., those upon which M has
changed its hypothesis. Similarly, M may be considered conservative, if M sticks
to its recent hypothesis, as long as it agrees with the ‘memorised’ examples.

Towards a Better Understanding of Incremental Learning 183

Obviously, this version of consistency is equivalent to local consistency – the
proof is essentially the same as for Theorem 5 and the fact is not surprising.

However, the third version of conservativeness is worth considering a little
closer. For iterative learning from text Theorem 9 immediately implies that this
notion is equivalent to both global and local conservativeness. The idea is quite
simple: a conservative learner really has to ‘know’ that it is allowed to change
its hypothesis! Thus being inconsistent with forgotten positive examples doesn’t
help at all, because the learner cannot memorise the forgotten examples and
thus not justify its mind change. In this sense, ‘forgotten’ examples are really
examples without any relevance for the learner on the given text. This intuition
is already reflected in the technical claim used in the proof of Theorem 9.

Many similar insights may be taken from the proofs above to obtain further
results. For instance, the separating classes provided in the proofs of Theorems 6
and 8, additionally lift our results to a more general case of incremental learning,
where the learner has a k-bounded memory, i. e., the capacity for memorising up
to k examples during the learning process, cf. [9]. Note that among our results we
did not have a characterisation of the structure of classes learnable iteratively,
however, our analysis will hopefully serve as a first step into this direction.

References

1. Angluin, D., Inductive inference of formal languages from positive data, Informa-
tion and Control 45, 117–135, 1980.

2. Angluin, D., Queries and concept learning, Machine Learning 2, 319–342, 1988.
3. Blum, M., A machine independent theory of the complexity of recursive functions,

Journal of the ACM 14, 322–336, 1967.
4. Case, J., Jain, S., Lange, S., and Zeugmann, T., Incremental concept learning for

bounded data mining, Information and Computation 152, 74–110, 1999.
5. Gennari, J.H., Langley, P., and Fisher, D., Models of incremental concept forma-

tion, Artificial Intelligence 40, 11–61, 1989.
6. Gold, E.M., Language identification in the limit, Information and Control 10, 447–

474, 1967.
7. Kinber, E. and Stephan, F., Language learning from texts: Mind changes, limited

memory and monotonicity, Information and Computation 123, 224–241, 1995.
8. Lange, S. and Grieser, G., On the power of incremental learning, Theoretical Com-

puter Science 288, 277-307, 2002.
9. Lange, S. and Zeugmann, T., Incremental learning from positive data, Journal of

Computer and System Sciences 53, 88–103, 1996.
10. Shinohara, T., Polynomial time inference of extended regular pattern languages,

in: Proc. RIMS Symposium on Software Science and Engineering, LNCS, Vol. 147,
pp. 115–127, Springer-Verlag, 1983.

11. Valiant, L.G., A theory of the learnable, Communications of the ACM 27, 1134–
1142, 1984.

12. Wiehagen, R., Limes-Erkennung rekursiver Funktionen durch spezielle Strategien,
Journal of Information Processing and Cybernetics (EIK) 12 , 93–99, 1976.

13. Zeugmann, T. and Lange, S., A guided tour across the boundaries of learning
recursive languages, in: Algorithmic Learning for Knowledge-Based Systems, LNAI,
Vol. 961, pp. 190–258, Springer-Verlag, 1995.

On Exact Learning from Random Walk

Nader H. Bshouty and Iddo Bentov

Department of Computer Science
Technion, Haifa, 32000, Israel

bshouty@cs.technion.ac.il, sidddo@t2.technion.ac.il
http://www.cs.technion.ac.il/

Abstract. We consider a few particular exact learning models based
on a random walk stochastic process, and thus more restricted than the
well known general exact learning models. We give positive and negative
results as to whether learning in these particular models is easier than
in the general learning models.

1 Introduction

While there are numerous results in the literature with regard to the well known
exact learning models such as Angluin Exact learning model [A88] and Little-
stone Online learning model [L87], it may also be interesting to investigate more
particular models such as the uniform Online model (UROnline) [B97], the ran-
dom walk online model (RWOnline) [BFH95], and the uniform random walk
online model (URWOnline) [BFH95].

All models investigated in this paper are over the boolean domain {0, 1}n,
and the goal of the learning algorithm is to exactly identify the target func-
tion with a polynomial mistake bound and in polynomial time for each
prediction.

The UROnline is the Online model where examples are generated indepen-
dently and uniformly randomly. In the RWOnline model successive examples
differ by exactly one bit, and in the URWOnline model the examples are
generated by a uniform random walk on {0, 1}n. Obviously, learnability in the
Online model implies learnability in all the other models with the same
mistake bound. Also, learnability in the RWOnline model implies learnability
in the URWOnline model with the same mistake bound. By using the results in
[BFH95, BMOS03], it is easy to show that learnability in the UROnline model
with a mistake bound q implies learnability in the URWOnline model with a
mistake bound Õ(qn). Therefore we have the following:

Online ⇒ RWOnline
⇓ ⇓

UROnline ⇒ URWOnline

In [BFH95] Bartlett et. al. developed efficient algorithms for exact learning
boolean threshold functions, 2-term Ring-Sum-Expansion (2-term RSE is the par-
ity of two monotone monomials) and 2-term DNF in the RWOnline model. Those

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 184–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Exact Learning from Random Walk 185

classes are already known to be learnable in the Online model [L87, FS92] (and
therefore in the RWOnline model), but the algorithms in [BFH95] (for threshold
functions) achieve a better mistake bound. In this paper a negative result will be
presented, showing that for all classes that possess a simple natural property, if the
class is learnable in the RWOnline model, then it is learnable in the Online model
with the same (asymptotic) mistake bound. Those classes include: read-onceDNF,
k-term DNF, k-term RSE, decision list, decision tree, DFA and halfspaces.

To study the relationship between the UROnline model and the URWOnline
model, we then focus our efforts on studying the learnability of some classes in
the URWOnline model that are not known to be polynomially learnable in the
UROnline model. For example, it is unknown whether the class of functions of
O(log n) relevant variables can be learned in the UROnline model with a poly-
nomial mistake bound (this is an open problem even for ω(1) relevant variables
[MDS03]), but it is known that this class can be learned with a polynomial num-
ber of membership queries. We will present a positive result, showing that the
information gathered from consecutive examples that are generated by a random
walk process can be used in a similar fashion to the information gathered from
membership queries, and thus we will prove that this class is learnable in the
URWOnline model.

We then establish another result which shows that learning in the URWOnline
model can indeed be easier than in the UROnline model, by proving that the
class of read-once monotone DNF formulas can be learned in the URWOnline
model. It is of course a major open question whether this class can be learned in
the Online model, as that implies that the general DNF class can also be learned
in the Online and PAC models [PW90, KLPV87]. Therefore, this result separates
the Online and the RWOnline models from the URWOnline model, unless DNF
is Online learnable. We now have (with the aforementioned learnability hardness
assumptions)

Online ≡ RWOnline
⇓ ⇓�⇑

UROnline
�⇐
⇒ URWOnline

We note that results such as [HM91] show that the read-once DNF class
can be learned in a uniform distribution PAC model, but that does not imply
URWOnline learning since the learning is not exact. Also, in [BMOS03], Bshouty
et. al. show that DNF is learnable in the uniform random walk PAC model, but
here again, that does not imply that DNF is learnable in the URWOnline model
since the learning is not exact.

2 Learning Models and Definitions

Let n be a positive integer and Xn = {0, 1}n. We consider the learning of classes
in the form C = ∪∞

n=1Cn, where each Cn is a class of boolean functions defined

186 N.H. Bshouty and I. Bentov

on Xn. Each function f ∈ C has some string representation R(f) over some
alphabet Σ. The length |R(f)| is denoted by size(f).

In the Online learning model (Online) [L87], the learning task is to exactly
identify an unknown target function f that is chosen by a teacher from C. At
each trial, the teacher sends a point x ∈ Xn to the learner and the learner has
to predict f(x). The learner returns to the teacher the prediction y. If f(x) �= y
then the teacher returns “mistake” to the learner. The goal of the learner is to
minimize the number of prediction mistakes.

In the Online learning model we say that algorithm A of the learner Online
learns the class C with a mistake bound t if for any f ∈ C algorithm A makes
no more than t mistakes. The hypothesis of the learner is denoted by h, and
the learning is called exact because we require that h ≡ f after t mistakes. We
say that C is Online learnable if there exists a learner that Online learns C
with a polynomial mistake bound, and the running time of the learner for each
prediction is poly(n, size(f)). The learner may depend on a confidence parameter
δ, by having a mistake bound t = poly(n, size(f), log 1

δ), and probability that
h �≡ f after t mistakes smaller than δ.

We now define the particular learning models that we consider in this paper.
The following models are identical to the above Online model, with various
constraints on successive examples that are presented by the teacher at each
trial:

Uniform Random Online (UROnline) In this model successive examples are
independent and randomly uniformly chosen from Xn.

Random Walk Online (RWOnline) In this model successive examples differ by
exactly one bit.

Uniform Random Walk Online (URWOnline) This model is identical to the
RWOnline learning model, with the added restriction that

Pr(x(t+1) = y | x(t)) =
{

1
n if Ham(y, x(t)) = 1
0 otherwise

where x(t) and x(t+1) are successive examples for a function that depends on n
bits, and the Hamming distance Ham(y, x(t)) is the number of bits of y and x(t)

that differ.

3 Negative Results for Random Walk Learning

In [BFH95] Bartlett et. al. developed efficient algorithms for exact learning
boolean threshold functions, 2-term Ring-Sum-Expansion and 2-term DNF in
the RWOnline model. Those classes are already known to be learnable in the
Online model [L87, FS92] (and therefore in the RWOnline model) but the al-
gorithm in [BFH95] for boolean threshold functions achieves a better mistake
bound. They show that this class can be learned by making no more than n+ 1

On Exact Learning from Random Walk 187

mistakes in the URWOnline model, improving on the O(n log n) bound for the
Online model proven by Littlestone in [L87].

Can we achieve a better mistake bound for other concept classes? We present
a negative result, showing that for all classes that possess a simple natural prop-
erty, the RWOnline model and the Online models have the same asymptotic mis-
take bound. Those classes include: read-once DNF, k-term DNF, k-term RSE,
decision list, decision tree, DFA and halfspaces.

We first give the following.

Definition 1. A class of boolean functions C has the one variable override
property if for every f(x1, ..., xn) ∈ C there exist constants c0, c1 ∈ {0, 1} and
g(x1, ..., xn+1) ∈ C such that

g ≡
{
c1 xn+1 = c0
f otherwise .

Common classes do possess the one variable override property. We give here a
few examples.

Consider the class of read-once DNF. Define for each function f(x1, . . . , xn),
g(x1, . . . , xn+1) = xn+1 ∨ f(x1, . . . , xn). Then g is read-once DNF, g(x, 1) = 1
and g(x, 0) = f(x). The construction is also good for decision list, decision
tree and DFA. For k-term DNF and k-term RSE we can take g = xn+1 ∧
f . For halfspace, consider the function f(x1, . . . , xn) = [

∑n
i=1 aixi ≥ b]. Then

g(x1, . . . , xn+1) = xn+1 ∨ f(x1, . . . , xn) can be expressed as g(x1, . . . , xn+1) =
[(b+

∑n
i=1 |ai|)xn+1 +

∑n
i=1 aixi ≥ b]. Notice that the class of boolean threshold

functions f(x1, . . . , xn) = [
∑n

i=1 aixi ≥ b] where ai ∈ {0, 1} does not have the
one variable override property.

In order to show equivalence between the RWOnline and Online models, we
notice that a malicious teacher could set a certain variable to override the func-
tion’s value, then choose arbitrary values for the other variables via random walk,
and then reset this certain variable and ask the learner to make a prediction.
Using this idea, we now prove

Theorem 1. Let C be a class that has the one variable override property. If C is
learnable in the RWOnline model with a mistake bound T (n) then C is learnable
in the Online model with a mistake bound 4T (n + 1).

Proof. Suppose C is learnable in the RWOnline model by some algorithm A,
which has a mistake bound of T (n). Let f(x1, ..., xn) ∈ C and construct

g(x1, ..., xn+1) ≡
{
c1 xn+1 = c0
f otherwise

using the constants c0, c1 that exist due to the one variable override property
of C. An algorithm B for the Online model will learn f by using algorithm A
simulated on g according to these steps:

188 N.H. Bshouty and I. Bentov

1. At the first trial
(a) Receive x(1) from the teacher.
(b) Send (x(1), c0) to A and receive the answer y.
(c) Send the answer y to the teacher, and inform A in case of a mistake.

2. At trial t
(a) receive x(t) from the teacher.
(b) x̃(t−1) ← (x(t−1)

1 , x
(t−1)
2 , ..., x

(t−1)
n , c0), x̃(t) ← (x(t)

1 , x
(t)
2 , ..., x

(t)
n , c0)

(c) Walk from x̃(t−1) to x̃(t), asking A for predictions, and informing A of
mistakes in case it fails to predict c1 after each bit flip.

(d) Send (x(t), c0) to A.
(e) Let y be the answer of A on (x(t), c0).
(f) Send the answer y to the teacher, and inform A in case of a mistake.

Obviously, successive examples given to A differ by exactly one bit, and the
teacher that we simulated for A provides it with the correct “mistake” messages,
since g(x(t), c0) = f(x(t)). Therefore, algorithm A will learn g exactly after
T (n + 1) mistakes at the most, and thus B also makes no more than T (n + 1)
mistakes.

In case the two constants c0, c1 cannot easily be determined, it is possible to
repeat this process after more than T (n+1) mistakes were received, by choosing
different constants. Thus the mistake bound in the worst case is 4T (n+ 1). ��

4 Positive Results for Random Walk Learning

4.1 Learning Boolean Functions That Depend on log n Variables

In this section we present a probabilistic algorithm for the URWOnline model
that learns the class of functions of k relevant variables, i.e, functions that de-
pend on at most k variables. We show that the algorithm makes no more than
poly(2k, log 1

δ) mistakes, and thus in particular for k = O(log n) the number of
mistakes is polynomially bounded. It is unknown whether it is possible to learn
this class in polynomial time in the UROnline model even for k = ω(1) [MDS03].

The Online learning algorithm RVL(δ), shown in figure 1, receives an exam-
ple x(t) at each trial t = 1, 2, 3, ... from the teacher, and makes a prediction
for f(x(t)).

4.1.1 Complexity of RVL(δ)
In this section we investigate the complexity of the algorithm. Define

α(k, δ) =
k(k + 1)

4
2k log(k22k+2) log

k

δ
.

The maximal number of prediction mistakes in phase 1 before each time a
new relevant variable is discovered is α(k, δ), and therefore the total number of
prediction mistakes possible in phase 1 is at most kα(k, δ). We will show in the

On Exact Learning from Random Walk 189

RVL(δ):

1. S ← ∅
2. At the first trial, make an arbitrary prediction for f(x(1))
3. Phase 1 - find relevant variables as follows:

(a) At trial t, predict h(x(t)) = f(x(t−1))
(b) In case of a prediction mistake, find the unique i such that x(t−1) and x(t)

differ on the ith bit, and perform S ← S ∪ {xi}
(c) If S hasn’t been modified after α(k, δ) consecutive prediction mistakes, then

assume that S contains all the relevant variables and goto (4)
(d) If |S| = k then goto (4), else goto (3.a)

4. Phase 2 - learn the target function:
(a) Prepare a truth table with 2|S| entries for all the possible assignments of the

relevant variables
(b) At trial t, predict on x(t) as follows:

i. If f(x(t)) is yet unknown because the entry in the table for the relevant
variables of x(t) hasn’t been determined yet, then make an arbitrary pre-
diction and then update that table entry with the correct value of f(x(t))

ii. If the entry for the relevant variables of f(x(t)) has already been set in
the table, then predict f(x(t)) according to the table value

Fig. 1. The RVL(δ) Algorithm - Relevant Variables Learner

next subsection that with probability of at least 1 − δ the first phase finds all
the relevant variables.

The maximal number of prediction mistakes in phase 2 is 2k. Thus the overall
number of prediction mistakes that RVL(δ) can make is bounded by

2k + kα(k, δ) ≤ 2kpoly

(
k, log

1
δ

)
.

This implies

Corollary 1. For k = O(log n), the number of mistakes that RVL(δ) makes is
bounded by poly

(
n, log 1

δ

)
.

4.1.2 Correctness of RVL(δ)
We will show that the probability that the hypothesis generated by RVL(δ) is
not equivalent to the target function is less than δ. This will be done using the
fact that a uniform random walk stochastic process is similar to the uniform
distribution. We first require the following definition.

Definition 2. Let Un be the uniform distribution on Xn. A stochastic process
P = (Y1, Y2, Y3, ...) is said to be γ-close to uniform if

Pm|x(b) = Pr(Ym+1 = b | Yi = xi, i = 1, 2, ...,m)

is defined for all m ∈ N, for all b ∈ Xn, and for all x ∈ XN
n , and

190 N.H. Bshouty and I. Bentov∑
b∈Xn

|Pm|x(b)− Un(b)| ≤ γ

for all m ∈ N and for all x ∈ XN
n .

We now quote the following lemma, that is proven in [DGM90]:

Lemma 1. For any uniform random walk stochastic process P and 0 < γ < 1,
let Qm be the stochastic process that corresponds to sampling P after at least m
steps. Then Qm is γ-close to uniform for

m =
n + 1

4
log

n

log(γ2/2 + 1)
.

Suppose the target function f depends on k variables. We can consider the
2n possible assignments as 2k equivalence classes of assignments, where each
equivalence class consists of 2n−k assignments under which f has the same value.
If xi is a relevant variable, then there exist at least two equivalence classes such
that flipping the ith bit in any assignment of one of these equivalence classes will
change the value of the target function f . We note that flipping an irrelevant
variable xi will not change the value of f , and therefore a prediction mistakes
cannot occur in this case. Hence, we can ignore the irrelevant variables and
analyze a random walk stochastic process on the cube {0, 1}k of the relevant
variables. Let us choose the following values

γ =
1
2k

, m =
k + 1

4
log

k

log(γ2/2 + 1)
=

k + 1
4

log
k

log(1/22k+1 + 1)
.

Now, let us ignore all the prediction mistakes that occur during m consecutive
trials, and consider the first subsequent trial in which an assignment x(t) caused
a prediction mistake to occur. By using Lemma 1, we obtain that the probability
that x(t) belongs to an equivalence class in which flipping the ith bit changes the
value of f is at least 2

2k − γ = 1
2k . Since the probability that xi flipped between

x(t−1) and x(t) is 1
k , the probability to discover a certain relevant variable xi in

this trial is at least 1
k

1
2k .

In order to get the probability that xi would not be discovered after t such
prediction mistakes lower than δ

k , we require

(
1− 1

k2k

)t

≤ δ

k
,

and using the fact that 1− x ≤ e−x, we get that

t = k2k log
k

δ

will suffice.

On Exact Learning from Random Walk 191

Therefore, if we allow k2km log k
δ prediction mistakes while trying to discover

xi, the probability of a failure is at most δ
k . Now,

Pr({RVL(δ) fails}) = Pr({finding xi1 fails} ∨ ... ∨ {finding xik
fails})

≤
k∑

q=1

Pr({finding xiq fails})

≤
k∑

q=1

Pr({finding xik
fails}) ≤ k

δ

k
= δ.

Using the fact that for every q ∈ N, 1
log(1/q+1) ≤ q + 1

2 , we observe that

k2km log
k

δ
=

k(k + 1)
4

2k log
k

log(1/22k+1 + 1)
log

k

δ

≤ k(k + 1)
4

2k log
(
k

(
22k+1 +

1
2

))
log

k

δ

≤ k(k + 1)
4

2k log(k22k+2) log
k

δ
= α(k, δ).

This is the maximal amount of prediction mistakes that the algorithm is set
to allow while trying to discover a relevant variable, and thus the proof of the
correctness of RVL(δ) is complete. ��

4.2 Learning Read-Once Monotone DNF Functions

We now consider the Read-Once Monotone DNF (ROM-DNF) class of boolean
functions, i.e. DNF formulas in which each variable appears at most once, and
none of the variables are negated.

If it is possible to learn this class in the Online model, then it can be shown
using the Composition Lemma [PW90, KLPV87] that the general class of DNF
functions is also learnable in the Online model. Since we have shown that proving
such a result is not easier in the RWOnline model than in the Online model, we
will now prove that we can learn the ROM-DNF class in the URWOnline model.
This will give further evidence that learnability in the URWOnline can indeed
be easier than in the RWOnline and Online models.

The Online learning algorithm ROM-DNF-L(δ), shown in figure 2, receives
an example x(t) at each trial t = 1, 2, 3, ... from the teacher, and makes a pre-
diction for f(x(t)). The algorithm begins by initializing sets Txi , which can be
regarded as terms. At each trial and for each variable xi, the term set Txi of
the algorithm will be a superset of the set of variables that belong to the term
T f

xi
in f that contains xi. The initial set Txi is {x1, x2, ..., xn} for every i, which

corresponds to the full term x1 ∧x2 ∧ · · · ∧xn. We will use the notation of terms
interchangeably with these sets, e.g. Txj (x(t)) denotes whether all the variables
of the assignment x(t) that belong to Txj are satisfied.

192 N.H. Bshouty and I. Bentov

In the algorithm we have the following eight cases:
Case I: Txi = ∅. Step 6 in the algorithm. In this case xi is not a relevant variable
so flipping xi will not change the value of the target. So the algorithm predicts
h(x(t)) = f(x(t−1)). No mistake will be received.
Case II: f(x(t−1)) = 0, x(t−1)

i = 1 and x
(t)
i = 0. Step (7a) in the algorithm. In

this case x(t) < x(t−1) and since f is monotone f(x(t)) = 0. So the algorithm
predicts 0. No mistake will be received.
Case III: f(x(t−1)) = 0, x(t−1)

i = 0, x(t)
i = 1 and Txi(x

(t)) = 1. Step (7(b)i)
in the algorithm. Since Txi is a superset of T f

xi
in f and Txi(x(t)) = 1 then

T f
xi

(x(t)) = 1 (if it exists in f) and f(x(t)) = 1. So the algorithm predicts 1. If a
mistake is received by the teacher then the algorithm knows that f is independent
of xi and then it sets Txi ← ∅ and removes xi from all the other terms.
Case IV: f(x(t−1)) = 0, x(t−1)

i = 0, x(t)
i = 1 and Txi(x(t)) = 0. Step (7(b)ii) in

the algorithm. Notice that since f(x(t−1)) = 0, all the terms in f are 0 in x(t−1)

and in particular T f
xi

(x(t−1)) = 0. If flipping the bit xi from 0 to 1 changes the
value of the function f to 1 then T f

xi
(x(t)) = 1. The algorithm predicts 0. In

case of a mistake, we have Txi(x(t)) = 0 and T f
xi

(x(t)) = 1 and therefore we can
remove every variable xj in Txi that satisfies x

(t)
j = 0. Notice that there is at

least one such variable, and that after removing all such variables the condition
that Txi is a superset of T f

xi
still holds. Also, if xk is not in T f

xi
then xi is not in

T f
xk

, so we can also remove xi from any such set Txk
.

Case V: f(x(t−1)) = 1, x(t−1)
i = 0 and x

(t)
i = 1. Step (8a) in the algorithm. In

this case x(t) > x(t−1) and since f is monotone f(x(t)) = 1. So the algorithm
predicts 1. No mistake will be received.
Case VI: f(x(t−1)) = 1, x(t−1)

i = 1, x(t)
i = 0 and there is k such that Txk

(x(t)) =
1. Step (8(b)i) in the algorithm. This is similar to Case III.
Case VII: f(x(t−1)) = 1, x(t−1)

i = 1, x(t)
i = 0, for every k, Txk

(x(t)) = 0 and
Txi(x(t−1)) = 0. Step (8(b)ii) in the algorithm. In this case if f(x(t)) = 0 then
since f(x(t−1)) = 1, we must have T f

xi
(x(t−1)) = 1. So this is similar to Case IV.

Case VIII: f(x(t−1)) = 1, x
(t−1)
i = 1, x(t)

i = 0, for every k, Txk
(x(t)) = 0

and Txi(x
(t−1)) = 1. Step (8(b)iii) in the algorithm. In this case the algorithm

can be in two modes, “A” or “B”. The algorithm begins in mode “A”, which
assumes that Txk

is correct, i.e. T f
xk

= Txk
for every k. With this assumption

f(x(t)) = ∨kT
f
xk

(x(t)) = ∨kTxk
(x(t)) = 0 and the algorithm predicts 0. In case

of a prediction mistake, we alternate between mode “A” and mode “B”, where
mode “B” assumes the opposite, i.e. it assumes that our lack of knowledge pre-
vents us from seeing that some terms are indeed satisfied, so when we don’t
know whether some terms are satisfied while operating under mode “B”, we
assert that they are satisfied and set the algorithm to predict 1.

The most extreme possibility that requires mode “A” in order not to make too
many mistakes is in case f(x1, x2, . . . , xn) = x1∧x2∧· · ·∧xn. The most extreme
possibility that requires mode “B” in order not to make too many mistakes is

On Exact Learning from Random Walk 193

ROM-DNF-L(δ):

1. For each variable xi, 1 ≤ i ≤ n, create the set Txi ← {x1, x2, x3, ..., xn}
2. MODE ← “A”
3. First Trial: Make an arbitrary prediction for f(x(1)).
4. Trial t: See whether the teacher sent a “mistake” message, and thus determine

f(x(t−1))
5. Find the variable xi on which the assignments x(t−1) and x(t) differ
6. If Txi = ∅ (meaning: xi is not a relevant variable), then predict h(x(t)) =

f(x(t−1))
7. Otherwise, if f(x(t−1)) = 0

(a) If xi flipped 1 → 0, then predict 0
(b) Otherwise, xi flipped 0 → 1

i. If Txi(x
(t)) = 1, then predict 1

On mistake do: Txi ← ∅, and update the other term sets by removing xi

from them.
ii. Otherwise, predict 0

On mistake do: update the set Txi by removing the unsatisfied variables
of x(t) from it, since they are unneeded, and update the rest of the term
sets by removing xi from any term set Txk such that xk was an unneeded
variable in Txi

8. Otherwise, f(x(t−1)) = 1
(a) If xi flipped 0 → 1, then predict 1
(b) Otherwise, xi flipped 1 → 0

i. If some Txk(x(t)) = 1, then predict 1
On mistake do: for each k such that Txk(x(t)) = 1, do Txk ← ∅, and
remove the irrelevant variable xk from the rest of the term sets

ii. If Txi(x
(t−1)) = 0, then predict 1

On mistake do: update the set Txi by removing the unsatisfied variables
of x(t−1) from it, since they are unneeded, and update the rest of the term
sets by removing xi in any term set Txk such that xk was an unneeded
variable in Txi

iii. If MODE = “A”, then predict 0
On mistake do: MODE ← “B”
If MODE = “B”, then predict 1
On mistake do: MODE ← “A”

9. Goto 4

Fig. 2. The ROM-DNF-L(δ) Algorithm - ROM-DNF Learner

in case f(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn. After the algorithm has completed
the learning and h ≡ f , it will always remain in mode “A”, as the sets Txi will
be accurate.

4.2.1 Correctness of ROM-DNF-L(δ)
We will find a p = poly(n, log 1

δ) such that the probability of ROM-DNF-L(δ)
making more than p mistakes is less than δ.

194 N.H. Bshouty and I. Bentov

We note that the only prediction mistakes that ROM-DNF-L(δ) makes in
which no new information is gained occur at step (8(b)iii). We will now bound
the ratio between the number of assignments that could cause noninformative
mistakes and the number of assignments that could cause informative mistakes
during any stage of the learning process.

An assignment x(t) is called an informative assignment at trial t if there exists
x(t−1) such that x(t−1) → x(t) is a possible random walk that forces the algorithm
to make a mistake and to eliminate at least one variable from one of the term
sets. An assignment x(t) is called a noninformative assignment at trial t if there
exists x(t−1) such that x(t−1) → x(t) is a possible random walk that forces the
algorithm to make a mistake in step (8(b)iii). Notice that x(t) can be informative
and noninformative at the same time.

At trial t, let N be the number of informative assignments and NA and NB be
the number of noninformative assignment in case the algorithm operates in mode
“A” and “B”, respectively. We want to show that min(NA/N,NB/N) ≤ N0 for
some constant N0. This will show that for at least one of the modes “A” or “B”,
there is a constant probability that a prediction mistake can lead to progress in
the learning, and thus the algorithm achieves a polynomial mistake bound.

At trial t let f = f1 ∨ f2 where

1. f1 = T̂ f
1 ∨ T̂ f

2 ∨ · · · T̂
f
k1

are the terms in f where for every term T̂ f
� there

exists a variable xj in that term such that Txj = T̂ f
� . Those are the terms

that have been discovered by the algorithm.
2. f2 = T f

1 ∨ T f
2 ∨ · · · ∨ T f

k2
are the terms in f where for every term T f

� and
every variable xj in that term, we have that Txj is proper super-term of T f

� .
Those are the terms of f that haven’t been discovered yet by the algorithm.
In other words, for each variable xi that belongs to such a term, the set Txi

contains unneeded variables.

Denote by X1 and X2 the set of variables of f1 and f2, respectively, and let
X3 be the set of irrelevant variables. Let a� = |T̂ f

� | be the number of variables
in T̂ f

� , b� = |T f
� | be the number of variables in T f

� , and d = |X3| be the number
of irrelevant variables.

First, let us assume that the algorithm now operates in mode “A”. Noninforma-
tive mistakes can occur only when: f(x(t−1)) = 1, x(t−1)

i = 1, x(t)
i = 0, for every

k, Txk
(x(t)) = 0 and Txi(x

(t−1)) = 1. The algorithm predict 0 but f(x(t)) = 1.
We will bound from above NA, the number of possible assignments x(t) that

satisfy the latter conditions. Since Txk
(x(t)) = 0 for every k and for every T̂ f

�

there is xj such that T̂ f
� = Txj , we must have T̂ f

� (x(t)) = 0 for every , and
therefore f1(x(t)) = 0. Since 1 = f(x(t)) = f1(x(t)) ∨ f2(x(t)), we must have
f2(x(t)) = 1. Therefore, the number of such assignments is at most

NA ≤ |{x(t) ∈ Xn | f1(x(t)) = 0 and f2(x(t)) = 1}|

= c2d

(
k2∏

i=1

2bi −
k2∏

i=1

(2bi − 1)

)
.

On Exact Learning from Random Walk 195

Here c =
∏k1

i=1(2
ai − 1) is the number of assignments to X1 where f1(x) = 0, 2d

is the number of assignments to X3, and
∏k2

i=1 2bi −
∏k2

i=1(2
bi − 1) is the number

of assignments to X2 where f2(x) = 1.
We now show that the number of informative assignments is at least

N ≥ 1
2
c2d

k2∑
j=1

k2∏
i�=j

(2bi − 1) (1)

and therefore

NA

N
≤

c2d
(∏k2

i=1 2bi −
∏k2

i=1(2
bi − 1)

)
1
2c2

d
∑k2

j=1
∏k2

i�=j(2bi − 1)

=
2(
∏k2

i=1 2bi −
∏k2

i=1(2
bi − 1))∑k2

j=1
∏k2

i�=j(2bi − 1)
.

To prove (1), consider (Case IV) which corresponds to step (7(b)ii) in the algo-
rithm. In case x(t) is informative there exist i and x(t−1) such that f(x(t−1)) = 0,
x

(t−1)
i = 0, x(t)

i = 1, Txi(x
(t)) = 0, and f(x(t)) = 1. Notice that since f(x(t−1)) =

0, all the terms T f
x�

satisfy T f
x�

(x(t−1)) = 0, and therefore all the term sets Tx�

satisfy Tx�
(x(t−1)) = 0. Since f(x(t)) = 1 and x(t) differ from x(t−1) only in xi,

it follows that T f
xi

is the only term that satisfies T f
xi

(x(t)) = 1.
One case in which this may occur is when f1(x(t)) = 0, and exactly one term

T f
xi
≡ T f

� in f2 satisfies x(t), and some variable xj that is in Txi and is not in T f
xi

is 0 in x(t). We will call such an assignment a perfect assignment. An assignment
x(t) where f1(x(t)) = 0 and exactly one term T f

xi
≡ T f

� in f2 satisfies x(t) is called
a good assignment. Notice that since f is monotone, for every good assignment
x(t) in which every xj that is in Txi and is not in T f

xi
is 1 in x(t), we can choose

the smallest index j0 such that xj0 is in Txi and is not in T f
xi

, and flip xj0 to 0 in
order to get a perfect assignment. Therefore, the number of perfect assignments
is at least 1/2 the number of good assignments.

To count the number of good assignments, we note that
∑k

j=1
∏k

i�=j(2
bi − 1)

is the number of assignments to X2 in which exactly one of the terms in f2 is
satisfied. As previously denoted, c is the number of assignments to X1 in which
f1 = 0, and 2d is the number of assignments to the irrelevant variables. This
gives (1).

Second, let us assume that the algorithm now operates in mode “B”. Again,
Noninformative mistakes can occur only when: f(x(t−1)) = 1, x(t−1)

i = 1, x(t)
i =

0, for every k, Txk
(x(t)) = 0 and Txi(x(t−1)) = 1. But now the algorithm predict

1 though f(x(t)) = 0.
Using the same reasoning, an upper bound for NB can be obtained when

neither f1 nor f2 are satisfied, thus

NB ≤ |{x(t) ∈ Xn | f1(x(t)) = 0 and f2(x(t)) = 0}| = c2d
k2∏

i=1

(2bi − 1).

196 N.H. Bshouty and I. Bentov

And therefore we have

NB

N
≤ c2d

∏k2
i=1(2

bi − 1)
1
2c2

d
∑k2

j=1
∏k2

i�=j(2bi − 1)

=
2
∏k2

i=1(2
bi − 1)∑k2

j=1
∏k2

i�=j(2bi − 1)
.

We now show that at least one of the above bounds is smaller than 3. There-
fore, in at least one of the two modes, the probability to select a noninformative
assignment is at most 3 times greater than the probability to select an informa-
tive assignment under the uniform distribution.

Consider

wi := 2bi − 1, α :=
∏k

i=1(wi + 1)−
∏k

i=1 wi∑k
j=1
∏k

i�=j wi

, β :=
∏k

i=1 wi∑k
j=1
∏k

i�=j wi

.

Then

β =
∏k

i=1 wi∏k
i=1 wi

∑k
i=1

1
wi

=
1∑k

i=1
1

wi

and

α =
∏k

i=1(wi + 1)−
∏k

i=1 wi∏k
i=1 wi

∑k
i=1

1
wi

=
1∑k

i=1
1

wi

(∏k
i=1(wi + 1)∏k

i=1 wi

− 1

)

= β

(
k∏

i=1

(1 +
1
wi

)− 1

)

≤ β

(
k∏

i=1

e
1

wi − 1

)
= β

(
e
∑k

i=1
1

wi − 1
)

= β(e
1
β − 1).

Therefore

min(NA/N,NB/N) = 2 min(α, β) ≤ 2 min(β(e
1
β − 1), β) ≤ 2× 1.443 < 3.

4.2.2 The Analysis for δ
Let PU be the probability under the uniform distribution that an assignment
that caused a prediction mistake is informative. We have shown that during any
trial, in at least one of the modes “A” or “B”, we have PU ≥ 1

4 .

On Exact Learning from Random Walk 197

For Lemma 1, let us now choose γ = 1
8 , and thus

m =
n + 1

4
log

n

log(1/(2 · 82) + 1)
=

n + 1
4

log(C0n), C0 ≈ 128.5 .

When looking at prediction mistakes that occur after at least m trials, we will be
γ-close to the uniform distribution. Therefore, in the algorithm the probability
PA that corresponds to PU is at least

PA ≥ PU − γ ≥ 1
8
.

For the analysis, if we only examine prediction mistakes that occur after m trials,
in case only noninformative mistakes occur, either the first or the second pre-
diction mistake would be made while operating under a mode with the bounded
uniform distribution failure probablity, since we switch between modes after a
noninformative mistake. So for one of these two trials, the probability that a
noninformative mistake indeed occured in that trial is (1 − 1

nPA) at the most.
This is because the probability that a variable whose flip in the previous trial
would cause an informative mistake is at least 1

nPA. Therefore, the probability
that no new information will be gained for (m+1)t consecutive trials is at most(

1− 1
n
PA

)t

=
(

1− 1
8n

)t

.

In order to obtain a suitable bound by finding t that is large enough we require(
1− 1

8n

)t

≤ δ

n2 ,

and therefore

t = 8n
(

2 logn + log
1
δ

)
.

Therefore, after a phase of (m + 1)t prediction mistakes, the probability of
failure to gain information is at most δ/n2.

We now get

Pr({ROM-DNF-L(δ) fails}) ≤ Pr({phase 1 fails} ∨ ... ∨ {phase n2 fails})
≤ n2 Pr({phase 1 fails})

≤ n2 δ

n2 = δ,

and the total number of mistakes that ROM-DNF-L(δ) makes is bounded by

n2(m + 1)t = n2
(
n + 1

4
log(C0n) + 1

)
8n
(

2 logn + log
1
δ

)
= poly

(
n, log

1
δ

)
.

��

198 N.H. Bshouty and I. Bentov

References

[A88] D. Angluin. Queries and concept learning. Machine Learning, 2, pp. 319-
342, 1987.

[B97] N. H. Bshouty: Simple Learning Algorithms Using Divide and Conquer.
Computational Complexity, 6(2): 174-194 (1997)

[BFH95] P. L. Bartlett, P. Fischer and K. Höffgen. Exploiting Random Walks for
Learning. Information and Computation, 176: 121-135 (2002).

[BMOS03] N. H. Bshouty, E. Mossel, R. O’Donnell and R. A. Servedio. Learning DNF
from Random Walks. FOCS 2003: 189-

[DGM90] P. Diaconis, R. Graham, and J. Morrison. Asymptotic analysis of a ran-
dom walk on a hypercube with many dimensions. Random Structures and
Algorithms, 1:51-72, 1990.

[FS92] P. Ficher and H. Simon. On learning ring-sum expansions. SIAM J. Com-
put. 21: 181–192, 1992.

[HM91] T. Hancock and Y. Mansour. Learning Monotone kμ DNF Formulas on
Product Distributions. Proc. 4th Ann. Workshop on Comp. Learning The-
ory (1991), 179-183.

[KLPV87] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the Learnability of Boolean
Formulae. In Proceedings of the 19th ACM Symposium on the Theory of
Computing, 285-195, 1987.

[L87] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound: A
New Linear-Threshold Algorithm. Machine Learning, 2, No. 4, 285–318,
1987.

[MDS03] E. Mossel, R. O’Donnell and R. A. Servedio. Learning juntas. STOC 2003:
206-212. Learning functions of k relevant variables. Journal of Computer
and System Sciences 69(3), 2004, pp. 421-434

[PW90] L. Pitt and M. K. Warmuth. Prediction-preserving reducibility. Journal of
Computer and System Science, 41(3), pp. 430–467, (1990).

Risk-Sensitive Online Learning

Eyal Even-Dar, Michael Kearns, and Jennifer Wortman

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104

Abstract. We consider the problem of online learning in settings in
which we want to compete not simply with the rewards of the best ex-
pert or stock, but with the best trade-off between rewards and risk.
Motivated by finance applications, we consider two common measures
balancing returns and risk: the Sharpe ratio [9] and the mean-variance
criterion of Markowitz [8]. We first provide negative results establish-
ing the impossibility of no-regret algorithms under these measures, thus
providing a stark contrast with the returns-only setting. We then show
that the recent algorithm of Cesa-Bianchi et al. [5] achieves nontrivial
performance under a modified bicriteria risk-return measure, and give
a modified best expert algorithm that achieves no regret for a “local-
ized” version of the mean-variance criterion. We perform experimental
comparisons of traditional online algorithms and the new risk-sensitive
algorithms on a recent six-year S&P 500 data set and find that the mod-
ified best expert algorithm outperforms the traditional with respect to
Sharpe ratio, MV, and accumulated wealth. To our knowledge this paper
initiates the investigation of explicit risk considerations in the standard
models of worst-case online learning.

1 Introduction

Despite the large literature on online learning and the rich collection of algo-
rithms with guaranteed worst-case regret bounds, virtually no attention has been
given to the risk (as measured by the volatility in returns or profits) incurred by
such algorithms. Partial exceptions are the recent work of Cesa-Bianchi et al. [5]
which we analyze in our framework, and the work of Warmuth and Kuzmin
[10] which assumes that a covariance matrix is revealed at each time step and
focuses on minimizing only risk, ignoring returns. Especially in finance-related
applications [6], where consideration of various measures of the volatility of a
portfolio are often given equal footing with the returns themselves, this omission
is particularly glaring.

It is natural to ask why one would like explicit consideration of volatility
or risk in online learning given that we are already blessed with algorithms
providing performance guarantees that track various benchmarks (e.g. best single
stock or expert) with absolute certainty. However, in many natural circumstances
the benchmark may not be sufficiently strong (e.g. tracking the best stock, as
opposed to a richer class of strategies) or the guarantees may be sufficiently
loose that realistic application of the existing online algorithms will require one

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 199–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 E. Even-Dar, M. Kearns, and J. Wortman

to incorporate additional, more traditional, risk criteria. For example, if one
applies the standard EG portfolio management algorithm [6] to the S&P 500
over a recent six year period, its returns are actually worse (for all positive
learning rates) than that of the simple uniform constant rebalanced portfolio
(UCRP), despite the theoretical guarantees on EG performance. In contrast,
a risk-sensitive online algorithm can considerably outperform the UCRP (see
Section 7). Thus for a variety of reasons, we are motivated to find algorithms
that can enjoy guarantees similar to those of the “traditional” approaches such
as EG, but that deliberately incorporate risk-return trade-offs. More generally,
since such trade-offs are an inherent part of the way Wall Street and the finance
community view investment performance, it is interesting to consider online
learning through the same lens.

The finance literature on balancing risk and return, and the proposed met-
rics for doing so, are far too large to survey here (see [2], chapter 4 for a nice
overview). Among the most common methods are the Sharpe ratio [9], and the
mean-variance (MV) criterion of which Markowitz was the first proponent [8].
Let rt ∈ [−1,∞) be the return of any given financial instrument (a stock,
bond, portfolio, trading strategy, etc.) during time period t. That is, if vt rep-
resents the dollar value of the instrument immediately after period t, we have
vt = (1+rt)vt−1. Negative values of rt (down to -1, representing the limiting case
of the instrument losing all of its value) are losses, and positive values are gains.
For a sequence of returns r = (r1, . . . , rT), suppose μ(r) denotes the (arithmetic)
mean and σ(r) denotes the standard deviation. Then the Sharpe ratio of the in-
strument on the sequence is simply μ(r)/σ(r),1 while the MV is μ(r)−σ(r). (The
term mean-variance is slightly misleading since the risk is actually measured by
the standard deviation, but we use it to adhere to convention.)

A common alternative is to use the mean and standard deviation not of the
rt but of the log(1 + rt), which corresponds to geometric rather than arithmetic
averaging of returns; we shall refer to the resulting measures as the geometric
Sharpe ratio and MV. Note that when rt is close to 0, (as it is generally in
finance applications) it is a good approximation of log(1 + rt), so maximizing
the arithmetic Sharpe ratio or MV is approximately equivalent to maximizing
their geometric counterparts. Although it is tempting to claim that log(1 + rt)
approximates rt minus the variance of rt, it actually approximates rt − r2

t /2,
which can be quite different even in financial applications.

Both the Sharpe ratio and the MV are natural, if somewhat different, methods
for specifying a trade-off between the risk and returns of a financial instrument.
Note that if we have an algorithm (like Weighted Majority [7, 4]) that maintains
a dynamically weighted and rebalanced portfolio over K constituent stocks, this
algorithm itself has a sequence of returns and thus its own Sharpe ratio and MV.
A natural hope for online learning would be to replicate the kind of no-regret
results to which we have become accustomed, but for regret in these risk-return

1 The original definition of the Sharpe ratio also considers the return of a risk-free
investment. This term can be safely ignored in analysis if we view returns as already
having been shifted by the rate of the risk-free investment.

Risk-Sensitive Online Learning 201

measures. Thus (for example) we would like an algorithm whose Sharpe ratio or
MV at sufficiently long time scales is arbitrarily close to the best Sharpe ratio
or MV of any of the K stocks. The prospects for these and similar results are
the topic of this paper.

Our first results are negative, and show that the specific hope articulated in
the last paragraph is unattainable. More precisely, we show that for either the
Sharpe ratio or MV, any online learning algorithm must suffer constant regret,
even when K = 2. This is in sharp contrast to the literature on returns alone,
where it is known that zero regret can be approached rapidly with increasing
time. Furthermore, and perhaps surprisingly, for the case of the Sharpe ratio
the proof shows that constant regret is inevitable even for an offline algorithm
(which knows in advance the specific sequence of returns for the two stocks, but
still must compete with the best Sharpe ratio on all time scales).

The fundamental insight in these impossibility results is that the risk term in
the different risk-return metrics introduces a “switching cost” not present in the
standard return-only settings. Intuitively, in the return-only setting, no matter
what decisions an algorithm has made up to time t, it can choose (for instance)
to move all of its capital to one stock at time t and immediately begin enjoying
the same returns as that stock from that time forward. However, under the
risk-return metrics, if the returns of the algorithm up to time t have been quite
different (either higher or lower) than those of the stock, the algorithm pays a
“volatility penalty” not suffered by the stock itself.

These strong impossibility results force us to revise our expectations for on-
line learning for risk-return settings. In the second part of the paper, we examine
two different approaches to algorithms for MV-like metrics. First we analyze the
recent algorithm of Cesa-Bianchi et al. [5] and show that it exhibits a trade-
off balancing returns with variance (as opposed to standard deviation) that is
additively comparable to a trade-off exhibited by the best stock. This approx-
imation is weaker than competitive ratio or no-regret, but remains nontrivial,
especially in light of the strong negative results mentioned above. In the sec-
ond approach, we give a general transformation of the instantaneous gains given
to algorithms (such as Weighted Majority) meeting standard returns-only no-
regret criteria. This transformation permits us to incorporate a recent moving
window of variance into the gains, yielding an algorithm competitive with a “lo-
calized” version of MV in which we are penalized only for volatility on short time
scales.

In Section 7 we show the results of an experimental comparison of tradi-
tional online algorithms with the risk-sensitive algorithms mentioned above on
a six-year S&P 500 data set. We find that the modified no-regret algorithm out-
performs the others with respect to Sharpe ratio, MV, and cumulative wealth.

2 Preliminaries

We denote the set of experts as integers K = {1, . . . ,K}. For each expert k ∈ K,
we denote its reward at time t ∈ {1, . . . , T} as xk

t . At each time step t, an

202 E. Even-Dar, M. Kearns, and J. Wortman

algorithm A assigns a weight wk
t ≥ 0 to each expert k such that

∑K
k=1 w

k
t = 1.

Based on these weights, the algorithm then receives a reward xA
t =

∑K
k=1 w

k
t x

k
t .

There are multiple ways to define the aforementioned rewards. In a financial
setting it is common to define them to be the simple returns of some underlying
investment. Thus if vt represents the dollar value of an investment following
period t, and vt = (1 + rt)vt−1 where rt ∈ [−1,∞), one choice is to let xt =
rt. When rt is close to 0, it is also a good approximation of log(1 + rt), so
maximizing the arithmetic average of rewards will be very close to maximizing
the geometric average. We assume that daily rewards lie in the range [−M,M]
for some constant M ; some of our bounds depend on M .

Two well-known measures of volatility that we will refer to often are variance
and standard deviation. Formally, if R̄t(k,x) is the average reward of expert k
on the reward sequence x at time t, then

V art(k,x) =
1
t

t∑
t′=1

(xk
t′ − R̄t(k,x))2, σt(k,x) =

√
V art(k,x)

We define Rt(k,x) to be the sum of rewards of expert k at times 1, . . . , t.
Traditionally in online learning the objective of an algorithm A has been to

achieve an average reward at least as good as the best expert over time, yielding
results of the form

R̄T (A,x) =
T∑

t=1

xA
t

T
≥ max

k∈K

T∑
t=1

xk
t

T
−
√

logK
T

= max
k∈K

R̄T (k,x)−
√

logK
T

An algorithm achieving this goal is often referred to as a “no regret” algorithm.
Now we are ready to define two standard risk-reward balancing criteria, the

Sharpe ratio [9] and the MV of expert k at time t.

Sharpet(k,x) =
R̄t(k,x)
σt(k,x)

, MVt(k,x) = R̄t(k,x)− σt(k,x)

In the following definitions we use the MV , but all apply mutatis mutandis
to Sharpe ratio. We say that an algorithm has no regret with respect to MV if

MVt(A,x) ≥ max
k∈K

MVt(k,x)−Regret(t)

where Regret(t) is a function that goes to 0 as t approaches infinity. We say that
an algorithm A has constant regret C for some constant C > 0 (that does not
depend on time but may depend on M) if for any large t there exists a t′ ≥ t
and a sequence x of expert rewards for which the following is satisfied:

MVt′(A,x) > max
k∈K

MVt′(k,x)− C

Finally, the competitive ratio of an algorithm A is defined as

inf
x

inf
t

MVt(A,x)
maxk∈K MVt(k,x)

where x can be any reward sequence generated for K experts. We sometimes
refer to MVt(A,x)/maxk∈K MVt(k,x) as the competitive ratio on x at time t.

Note that for negative concepts like constant regret, it is sufficient to consider
a single sequence of expert rewards for which no algorithm can perform well.

Risk-Sensitive Online Learning 203

3 A Lower Bound for the Sharpe Ratio

In this section we show that even an offline policy cannot compete with the best
expert with respect to the Sharpe ratio, even when there are only two experts.

Theorem 1. Any offline algorithm has constant regret with respect to Sharpe
ratio. Furthermore, for any T ≥ 30, there exists an expert reward sequence x of
length T and two points in time such that no algorithm can attain more than a
1− C competitive ratio on x at both points, for some constant C > 0.

We give a brief overview the proof here; details are provided in Appendix A.
The lower bound is proved in a setting where there are only two experts

and the performance of the algorithm is tested at only two points. The reward
sequence used is simple with each expert’s reward changing only twice. The
performance of the algorithm is tested when the second change occurs and at the
end of the sequence. If the algorithm reward at the first checkpoint is too high,
it will be the case that the competitive ratio at that point is bad. If it is lower,
the competitive ratio at the second checkpoint will be bad. We characterize the
optimal offline algorithm and show that it cannot compete with the best stock
on this sequence. This, of course, implies that no algorithm can compete.

4 A Lower Bound for MV

A similar bound can be shown for our additive risk-reward measure, the MV.

Theorem 2. Any online algorithm has constant regret with respect to the MV .

The proof will again be based on specific sequences that will serve as counterex-
amples to show that in general it is not possible to compete with the best expert
in terms of the MV. We begin by describing how these sequences are generated.
Again we consider a scenario in which there are only two experts. For the first
n time steps, the first expert receives at each time step a reward of 2 with prob-
ability 1/2 or a reward of 0 with probability 1/2, while at times n+ 1, ..., 2n the
reward is always 1. The second expert’s reward is always 1/4 throughout the
entire sequence. The algorithm’s performance will be tested only at times n and
2n, and the algorithm is assumed to know the process by which these expert
rewards are generated.

This lower bound construction is not a single sequence but is a set of sequences
generated according to the distribution over the first expert’s rewards. We will
refer to the set of all sequences that can be generated by this distribution as
S. For any specific sequence in S, the optimal offline algorithm would suffer
no regret, but we will show by the probabilistic method that there is no online
algorithm that can perform well on all sequences in S at both checkpoints.
In contrast to “standard” experts, there are now two randomness sources: the
internal randomness of the algorithm and the randomness of the rewards.

We now give a high level overview. First we will consider a “balanced sequence”
in S in which expert 1 receives an equal number of rewards that are 2 and rewards
that are 0. Assuming such a sequence, it will be the case that the best expert attime

204 E. Even-Dar, M. Kearns, and J. Wortman

n is expert 2 with reward 1/4 and standard deviation 0, while the best expert at
time 2n is expert 1 with reward 1 and standard deviation 1/

√
2. Note that any

algorithm that has average reward 1/4 at time n in this scenario will be unable
to overcome this start and will have a constant regret at time 2n. Yet it might
be the case on such sequences that a sophisticated adaptive algorithm could have
an average reward higher than 1/4 at time n and still suffer no regret at time n.
Hence, for the balanced sequence we first look at the case in which the algorithm
is “balanced” as well, i.e. the weight it puts on expert 1 on days with reward 2 is
equal to the weight it puts on expert 1 on days with reward 0. We can later drop
this requirement.

In our analysis we show that most sequences in S are “close” to the balanced
sequence. If the average reward of an algorithm over all sequences is less than
1/4 + δ, for some constant δ, then by the probabilistic method there exists a
sequence for which the algorithm will have constant regret at time 2n. If not, then
there exists a sequence for which at time n the algorithm’s standard deviation
will be larger than δ by some constant factor, so the algorithm will have regret
at time n. This argument will also be probabilistic, preventing the algorithm
from constantly being “lucky.” Details of this proof are given in Appendix B.

In fact we can extend this theorem to the broader class of objective functions
of the form R̄t(k,x) − ασt(A,x), where α > 0 is constant. The proof, which
is similar to the proof of Theorem 2, is omitted due to space limits. Both the
constant and the length of the sequence will depend on α.

Theorem 3. Let α ≥ 0 be a constant. The regret of any online algorithm with
respect to the metric R̄t(k,x)−ασt(A,x) is constant for some positive constant
that depends on α.

5 A Bicriteria Upper Bound

In this section we show that the recent algorithm of Cesa-Bianchi et al. [5] can
yield a risk-reward balancing bound. Their original result expressed a no-regret
bound with respect to rewards only, but the regret itself involved a variance term.
Here we give an alternate analysis demonstrating that the algorithm actually
respects a risk-reward trade-off. The quality of the results here depends on the
bound M on the absolute value of expert rewards as we will show.

We first describe the algorithm Prod which takes one parameter η. It main-
tains a set of K weights, one for each expert. The (unnormalized) weights w̃k

t

are initialized with w̃k
1 = 1 for every expert k and updated at each time step

according to w̃k
t ← w̃k

t−1(1 + ηxk
t−1). The normalized weights at each time step

are then defined as wk
t = w̃k

t /W̃t where W̃t =
∑k

j=1 w̃
j
t .

Theorem 4. For any expert k ∈ K, for the algorithm Prod with η = 1/(LM)
where L > 2 we have at time t(
LR̄t(A,x)
L− 1

− η(3L− 2)V art(A,x)
6L

)
≥
(
LR̄t(k,x)
L + 1

− η(3L + 2)V art(k,x)
6L

)
− lnK

η

for any sequence x in which the absolute value of each reward is bounded by M .

Risk-Sensitive Online Learning 205

The proof is given in Appendix C. The two large expressions in parentheses in
Theorem 4 additively balance rewards and variance of rewards, but with different
coefficients. It is tempting but apparently not possible to convert this inequality
into a competitive ratio. Nevertheless certain natural settings of the parameters
cause the two expressions to give quantitatively similar trade-offs. For example,
let x be any sequence of rewards which are bounded in [−0.1, 0.1] and let A be
Prod for η = 1. Then for any time t and expert k we have

1.11R̄t(A,x)− 0.466V art(A,x) ≥ 0.91R̄t(k,x)− 0.533V art(k,x)− (10 lnK)/t

This gives a relatively even balance between rewards and variance on both sides.
We note that the choice of a “reasonable” bound on the rewards magnitudes
should be related to the time scale of the process — for instance, returns on the
order of ±1% might be entirely reasonable daily but not annually.

6 No-Regret Results for Localized Risk

We now show a no-regret result for an algorithm optimizing an alternative ob-
jective function that incorporates both risk and reward. The primary leverage of
this alternative objective is that risk is now measured only “locally.” The goal
is to balance immediate rewards with how far these immediate rewards deviate
from the average rewards over some “recent” past. In addition to allowing us
to skirt the strong impossibility results for no-regret in the standard risk-return
measures, we note that our new objective may be of independent interest, as it
incorporates other notions of risk that are commonly considered in finance where
short-term volatility is usually of greater concern than long-term. For example,
this objective has the flavor of what is sometimes called “maximum draw-down,”
the largest decline in the price of a stock over a given, usually short, time period.

Consider the following risk measure for an expert k on a reward sequence x:

Pt(k,x) =
t∑

t′=2

(xk
t′ −AVG∗

� (x
k
1 , ..., x

k
t′))2

where AVG∗
� (xk

1 , .., x
k
t) =

∑t
t′=t−�+1(x

k
t′/) is the fixed window size average for

some window size > 0. The new risk-sensitive criterion at time t will be

Gt(A,x) = R̄t(A,x)− Pt(A,x)/t.

Observe that the measure of risk defined here is very similar to variance. In
particular, if for every expert k ∈ K we let pk

t = (xk
t −AVG∗

t (xk
1 , .., x

k
t))2, then

Pt(k,x)/t =
t∑

t′=2

pk
t′

t
, V art(k,x) =

n∑
t′=2

pk
t′

t

(
1 +

1
t′ − 1

)
Our measure differs from the variance in two aspects. The variance of the se-
quence will be affected by rewards in the past and the future, whereas our mea-
sure depends only on rewards in the past, and for our measure the current reward

206 E. Even-Dar, M. Kearns, and J. Wortman

is compared only to the rewards in the recent past, and not to all past rewards.
While both differences are exploited in the proof, the fixed window size is key.
The main obstacle of the algorithms in the previous sections was the “memory”
of the variance, which prevented switching between experts. The memory of the
penalty is now and our results will be meaningful when = o(

√
T).

The algorithm we discuss will work by feeding modified instantaneous gains to
any best experts algorithm that satisfies the assumption below. This assumption
is met by algorithms such as Weighted Majority [7, 4].

Definition 1. An optimized best expert algorithm is an algorithm that guaran-
tees that for any sequence of reward vectors x over experts K = {1, . . . ,K},
the algorithm selects a distribution wt over K (using only the previous reward
functions) such that T∑

t=1

K∑
k=1

wk
t x

k
t ≥

T∑
t=1

xk
t −

√
TM logK,

where |xk
t | ≤M and k is any expert. Furthermore, we also assume that decision

distributions do not change quickly: ‖wt −wt+1‖1 ≤
√

log(K)/t.

Since the risk function now has shorter memory, there is hope that a standard
best expert algorithm will work. Therefore, we would like to incorporate this
risk term into the instantaneous rewards fed to the best experts algorithm. We
will define this instantaneous quantity, the gain of expert k at time t to be
gk

t = xk
t − (xk

t − AV G∗
� (x

k
1 , ..., x

k
t−1))

2 = xk
t − pk

t , where pk
t is the penalty for

expert k at time t. Similarly the penalty for an algorithm A can be defined
as pA

t = (xA
t − AV G∗

� (x
A
1 , ..., x

A
t−1))

2. It is natural to wonder whether pA
t =∑K

k=1 w
k
t p

k
t ; unfortunately, this is not the case, but they are similar. To formalize

the connection between the measures, we let P̂ (A,x) =
∑T

t=1
∑K

k=1 w
k
t p

k
t be the

weighted penalty function of the experts, and P (A,x) =
∑T

t=1 p
A
t be the penalty

function observed by the algorithm. The next lemma relates these quantities.

Lemma 1. Let x be any reward sequence such that all rewards are bounded by

M . Then P̂T (A,x) ≥ PT (A,x)− 2TM2
√

log K
T−� .

Proof

P̂T (A,x) =
T∑

t=1

K∑
k=1

wk
t (xk

t −AV G∗
� (x

k
1 , .., x

k
t))2

≥
T∑

t=1

(
K∑

k=1

wk
t

(
xk

t −
∑�

j=1 x
k
t−j+1

))2

=
T∑

t=1

(
K∑

k=1

wk
t x

k
t −

∑K
k=1
∑�

j=1(w
k
t − wk

t−j+1 + wk
t−j+1)x

k
t−j+1

)2

=
T∑

t=1

⎛⎝(K∑
k=1

wk
t x

k
t −

∑K
k=1
∑�

j=1 w
k
t−j+1x

k
t−j+1

)2

+

(∑K
k=1

∑�
j=1 ε

k
jx

k
t−j+1

)2

Risk-Sensitive Online Learning 207

−2

(∑K
k=1

∑�
j=1 ε

k
jx

k
t−j+1

)(
K∑

k=1

wk
t x

k
t −

∑K
k=1

∑�
j=1 w

k
t−j+1x

k
t−j+1

))

≥ PT (A,x)−
T∑

t=1

(
2M

∑K
k=1

∑�
j=1 |εkj |M

)
≥ PT (A,x)− 2M2T

√
logK
T −

where εkj = wk
t − wk

t−j+1. The first inequality is an application of Jensen’s in-
equality using the convexity of x2. The third inequality follows from the fact
that

∑K
k=1 |εkj | is bounded by j

√
log K
T−j using our best expert assumption. ��

The following theorem is the main result of this section, describing a no-regret
algorithm with respect to the risk-sensitive function GT .

Theorem 5. Let A be a best expert algorithm that satisfies Definition 1 with
instantaneous gain function gk

t = xk
t − (xk

t − AV G∗
� (x

k
1 , ..., x

k
t−1))

2 for expert k
at time t. Then for large enough T for any reward sequence x and any expert k
we have for window size

GT (A,x) ≥ GT (k,x)−O

(
M2

√
logK
T −

)

Proof: Using the best expert assumption and Lemma 1, we have

T ·G(k,x) =
T∑

t=1

xk
t −

T∑
t=1

(xk
t −AV G∗

� (x
k
1 , .., y

k
t))2

≤
T∑

t=1

K∑
k′=1

wk′
t xk′

t −
T∑

t=1

K∑
k′=1

wk′
t (xk′

t −AV G∗
� (x

k′
1 , .., xk′

t))2 + M
√
T logK

≤ T ·G(A,x) + 2TM2

√
logK
T −

+ M
√
T logK

Dividing both sides by T yields the result. ��

Corollary 1. Let A be a best expert algorithm that satisfies Definition 1 with
instantaneous reward function gk

t = xk
t − (xk

t − AV G∗
� (x

k
1 , ..., x

k
t−1))2. Then for

large enough T we have for any expert k and fixed window size = O(log T)

G(A,x) ≥ G(k,x)− Õ

(
M2

√
logK
T

)

7 Empirical Results

We conclude by showing the results of some simulations of the algorithms and
measures discussed. The data set used in these experiments consists of the closing
prices on the 1632 trading days between January 4, 1999 and June 29, 2005 of the
469 S&P 500 stocks that remained in the index for the duration of the period.

208 E. Even-Dar, M. Kearns, and J. Wortman

0 1 2 3 4 5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Learning Rate η

A
nn

ua
liz

ed
 G

eo
m

et
ric

 M
ea

n
1 0.8 0.6 0.4 0.2 0

Parameter βEG
Prod
WM
Mod WM
UCRB
BSS

0 1 2 3 4 5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Learning Rate η

A
nn

ua
liz

ed
 G

eo
m

et
ric

 S
ta

nd
ar

d
D

ev

1 0.8 0.6 0.4 0.2 0
Parameter βEG

Prod
WM
Mod WM
UCRB
BSS

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Learning Rate η

A
nn

ua
liz

ed
 G

eo
m

et
ric

 S
ha

rp
e

1 0.8 0.6 0.4 0.2 0
Parameter βEG

Prod
WM
Mod WM
UCRB
BSS

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Learning Rate η

A
nn

ua
liz

ed
 G

eo
m

et
ric

 M
V

1 0.8 0.6 0.4 0.2 0
Parameter β

EG
Prod
WM
Mod WM
UCRB
BSS

0 200 400 600 800 1000 1200 1400 1600

0

1

2

3

4

5

Time

C
um

ul
at

iv
e

R
et

ur
n

Mod WM β=0.05
Mod WM β=0.15
Mod WM β=0.25
UCRB
BSS

Fig. 1. Top Row and Bottom Left: Annualized geometric mean, standard deviation,
Sharpe ratio, and MV of each algorithm plus the UCRB portfolio and the best single
stock at the end of the 1632 day period. Bottom Right: Cumulative geometric return
of the modified WM, the best single stock at each time step, and the UCRB portfolio.

We implemented the exponential gradient (EG) algorithm of Hembold et al.
[6], Prod [5], weighted majority [7, 4], and the modified best experts algorithm
presented in Section 6 using weighted majority as the black box. For the modified
version of WM, we used a fixed window average size = 40. Other values of
yield similar performance results.

The first four plots in Figure 1 show the annualized geometric mean, standard
deviation, Sharpe ratio, and MV of the four algorithms along with those of the
uniform constant rebalanced portfolio (UCRB) and the best single stock (BSS)
with respect to each performance measure. Note that the x axis ranges over
values of the learning rate η for EG and Prod and values of the parameter β for
both versions of WM making direct comparisons at particular parameter values
difficult. However, it is clear that on this data set, WM and the modified WM
algorithm outperform EG and Prod for all parameter settings. In fact, EG and
Prod are outperformed by both the best single stock and the uniform constant
rebalanced portfolio. This may be due to the large number of stocks available;
similar behavior has been noted by [3] and [1]. Additionally, our modified WM
outperforms the best expert with respect to geometric mean, Sharpe ratio, and
MV when WM’s β parameter is small.

The final plot shows the cumulative geometric return (i.e.
∑T

t=1 log(1 + rt)
where rt is return as defined in Section 2) as a function of time T for our
modified version of WM with three different β values,the best single stock at
each time step, and the uniform constant rebalanced portfolio. At early times,
there exist single stocks which can outperform the algorithm, but as T increases,
our modified version of WM surpasses any individual stock.

Risk-Sensitive Online Learning 209

References

1. A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire. Algorithms for Portfolio
Management based on the Newton Method, ICML, 2006.

2. Z. Bodie, A. Kane, and A. J. Marcus. Portfolio Performance Evaluation, Invest-
ments, 4th edition, Irwin McGraw-Hill, 1999.

3. A. Borodin, R. El-Yaniv, and V. Gogan. Can We Learn to Beat the Best Stock,
JAIR, 21: 579–594, 2004.

4. N. Cesa-Bianchi, Y. Freund, D. Haussler, D. Helmbold, R.E. Schapire, and M.K.
Warmuth. How to Use Expert Advice, J. of the ACM, 44(3): 427-485, 1997.

5. N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved Second-Order Bounds for
Prediction with Expert Advice, COLT, 217–232, 2005.

6. D.P. Helmbold, R.E. Schapire, Y. Singer, and M.K. Warmuth. On-line portfolio
selection using multiplicative updates, Mathematical Finance, 8(4): 325–347, 1998.

7. N. Littlestone and M. K. Warmuth. The Weighted Majority Algorithm, Informa-
tion and Computation, 108(2): 212-261, 1994.

8. H. Markowitz. Portfolio Selection, The Journal of Finance, 7(1):77–91, 1952.
9. W. F. Sharpe. Mutual Fund Performance, The Journal of Business, Vol 39, Number

1, part 2: Supplement on Security Prices, 119-138, 1966.
10. M. K. Warmuth and D. Kuzmin. Online Variance Minimization, COLT, 2006.

A Proof of Theorem 1

We define an m-segment sequence as a sequence described by expert rewards at m
times, n1 < ... < nm, such that for all i ∈ {1, . . . ,m}, every expert’s reward in the
time segment [ni−1 + 1, ni] is constant, i.e. ∀t ∈ [ni−1 + 1, ni], ∀k ∈ K, xk

t = xk
ni

.
where n0 = 0. We say that an algorithm has a fixed policy in the ith segment if the
weights that the algorithm places on each expert remain constant between times
ni−1 + 1 and ni. The following lemma states that an algorithm with maximal
Sharpe ratio at time ni uses a fixed policy at every segment prior to i.

Lemma 2. Let x be an m-segment reward sequence. Let Ar
i (for i ≤ m) be the

set of algorithms that have average reward r on x at time ni. Then an algorithm
A ∈ Ar

i with minimal standard deviation has a fixed policy in every segment
prior to i. The optimal Sharpe ratio at time ni is thus attained by an algorithm
that has a fixed policy in every segment prior to i.

The intuition behind this lemma is that switching weights within a segment
can only result in higher variance without enabling an algorithm to achieve an
average reward any higher than it would have been able to achieve using a fixed
set of weights in this segment. The proof is omitted due to lack of space.

With this lemma, we are ready to prove Theorem 1. We will consider one
specific 3-segment sequence with two experts and show that there is no algorithm
that can have competitive ratio bigger than 0.71 at both times n2 and n3 on this
sequence. The three segments are of equal length. The rewards for expert 1 are
.05, .01, and .05 in intervals 1, 2, and 3 respectively. The rewards for expert 2

210 E. Even-Dar, M. Kearns, and J. Wortman

are .011, .009, and .05. 2 The Sharpe ratio of the algorithm will be compared to
the Sharpe ratio of the best expert at times n2 and n3. Analyzing the sequence
we observe that the best expert at time n2 is expert 2 with Sharpe ratio 10. The
best expert at n3 is expert 1 with Sharpe ratio approximately 1.95.

The intuition behind this construction is that in order for the algorithm to
have a good competitive ratio at time n2 it cannot put too much weight on
expert 1 and must put significant weight on expert 2. However, putting significant
weight on expert 2 prevents the algorithm from being competitive in time n3
where it must have switched completely to expert 1 to maintain a good Sharpe
ratio. The remainder of the proof formalizes this notion.

Suppose first that the average reward of the algorithm on the lower bound
Sharpe sequence x at time n2 is at least .012. The reward in the second segment
can be at most .01, so if the average reward at time n2 is .012 + z where z is
positive constant smaller than .018, then the standard deviation of the algorithm
at n2 is at least .002+z. This implies that the algorithm’s Sharpe ratio is at most
.012+z
.002+z , which is at most 6. Comparing this to the Sharpe ratio of 10 obtained
by expert 2, we see that the algorithm can have a competitive ratio no higher
than 0.6, or equivalently the algorithm’s regret is at least 4.

Suppose instead that the average reward of the algorithm on x at time n2
is less than .012. Note that the Sharpe ratio of expert 1 at time n3 is approx-
imately .03667

.018 > 1.94. In order to obtain a bound that holds for any algorithm
with average reward at most .012 at time n2, we consider the algorithm A which
has reward of .012 in every time step and clearly outperforms any other algo-
rithm.3 The average reward of A for the third segment must be .05 as it is the
reward of both experts. Now we can compute its average and standard devia-
tion R̄n3(A,x) ≈ 2.4667 and σn3(A,x) ≈ 1.79. The Sharpe ratio of A is then
approximately 1.38, and we find that A has a competitive ratio at time n3 that
is at most 0.71 or equivalently its regret is at least 0.55.

The lower bound sequence that we used here can be further improved to
obtain a competitive ratio of .5. The improved sequence is of the form n, 1, n for
the first expert’s rewards, and 1+1/n, 1−1/n, n for the second expert’s rewards.
As n approaches infinity, the competitive ratio of the Sharpe ratio tested on two
checkpoints at n2 and n3 approaches .5.

B Proof of Theorem 2

Recall that we are considering a two expert scenario. Until time n, expert 1
receives a reward of 2 with probably 1/2 and a reward of 0 with probability 1/2.
From n to 2n, he always receives 1. Expert 2 always receives 1/4. Recall that we
refer to the set of sequences that can be generated by this distribution as S.

In this analysis we use a form of Azuma’s inequality, which we present here for
sake of completeness. Note that we cannot use standard Chernoff bound since
we would like to provide bounds on the behavior of adaptive algorithms.
2 Note that since the Sharpe ratio is a unitless measure, we could scale the rewards

in this sequence by any positive constant factor and the proof would still hold.
3 Of course such an algorithm cannot exist for this sequence.

Risk-Sensitive Online Learning 211

Lemma 3 (Azuma). Let ζ0, ζ1, ..., ζn be a martingale sequence such that for
each i, 1 ≤ i ≤ n, we have |ζi − ζi−1| ≤ ci where the constant ci may depend on
i. Then for n ≥ 1 and any ε > 0

Pr [|ζn − ζ0| > ε] ≤ 2e
− ε2

2
∑n

i=1 c2
i

Now we define two martingale sequences, yt(x) and zt(A,x). The first counts
the difference between the number of times expert 1 receives a reward of 2 and
the number of times expert 1 receives a reward of 0 on a given sequence x ∈ S.
The second counts the difference between the weights that algorithm A places
on expert 1 when expert 1 receives a reward of 2 and the weights placed on
expert 1 when expert 1 receives a reward of 0. We define y0(x) = z0(A,x) = 0
for all x and A.

yt+1(x) =
{
yt(x) + 1, x1

t+1 = 2
yt(x)− 1, x1

t+1 = 0 , zt+1(A,x) =
{
zt(A,x) + w1

t+1, x1
t+1 = 2

zt(A,x)− w1
t+1, x1

t+1 = 0

In order to simplify notation throughout the rest of this section, we will often
drop the parameters and write yt and zt when A and x are clear from context.

Recall that R̄t(A,x) is the average reward of an algorithm A on sequence
x at time t. We denote the expected average reward at time t as R̄t(A,D) =
Ex∼D

[
R̄t(A,x)

]
, where D is the distribution over rewards.

Next we define a set of sequences that are “close” to the balanced sequence
on which the algorithm A will have a high reward, and subsequently show that
for algorithms with high expected average reward this set is not empty.

Definition 2. Let A be any algorithm and δ any positive constant. Then the
set Sδ

A is the set of sequences x ∈ S that satisfy (1) |yn(x)| ≤
√

2n ln(2n),
(2) |zn(A,x)| ≤

√
2n ln(2n), (3) R̄n(A,x) ≥ 1/4 + δ −O(1/n).

Lemma 4. Let δ be any positive constant and A be an algorithm such that
R̄n(A,D) ≥ 1/4 + δ. Then Sδ

A is not empty.

Proof: Since yn and zn are martingale sequences, we can apply Azuma’s in-
equality to show that Pr[yn ≥

√
2n ln(2n)] < 1/n and Pr[zn ≥

√
2n ln(2n)] <

1/n. Thus, since rewards are bounded by a constant value in our construction
(namely 2), the contribution of sequences for which yn or zn are larger than√

2n ln(2n) to the expected average reward is bounded by O(1/n). This implies
that if there exists an algorithm A such that R̄n(A,D) ≥ 1/4 + δ, then there
exists a sequence x for which the R̄n(A,x) ≥ 1/4+ δ−O(1/n) and both yn and
zn are bounded by

√
2n ln(2n). ��

Now we would like to analyze the performance of an algorithm for some se-
quence x in Sδ

A. We first analyze the balanced sequence where yn = 0 with a
balanced algorithm (so zn = 0), and then show how the analysis easily extends
to sequences in the set SA. In particular, we will first show that for the balanced
sequence the optimal policy in terms of the objective function achieved has one
fixed policy in times [1, n] and another fixed policy in times [n + 1, 2n]. Due to
lack of space the proof, which is similar but slightly more complicated than the
proof of Lemma 2, is omitted.

212 E. Even-Dar, M. Kearns, and J. Wortman

Lemma 5. Let x ∈ S be a sequence with yn = 0 and let Ax
0 be the set of

algorithms for which zn = 0 on x. Then the optimal algorithm in Ax
0 with respect

to the objective function MV (A,x) has a fixed policy in times [1, n] and a fixed
policy in times [n + 1, 2n].

Now that we have characterized the optimal algorithm for the balanced setting,
we will analyze its performance. The next lemma (proof omitted) connects the
average reward to the standard deviation on balanced sequences by using the
fact that on balanced sequences algorithms behave as they are “expected.”

Lemma 6. Let x ∈ S be a sequence with yn = 0, and let Ax
0 be the set of

algorithms with zn = 0 on x. For any positive constant δ, if A ∈ Ax
0 and

R̄n(A,x) = 1/4 + δ, then σn(A,x) ≥ 4δ
3 .

The following is a bound on the objective function at time 2n given high reward
at time n. The proof (again omitted) uses the fact the added standard deviation
is at least as large as the added average reward and thus cancels it.

Lemma 7. Let x be any sequence and A any algorithm. If R̄n(A,x) = 1/4+ δ,
then MV2n(A,x) ≤ 1/4 + δ for any positive constant δ.

Recall that the best expert at time n is expert 2 with reward 1/4 and standard
deviation 0, and the best expert at time 2n is expert 1 with average reward 1
and standard deviation 1/

√
2. Using this knowledge in addition to Lemmas 6

and 7, we obtain the following proposition for the balanced sequence:

Proposition 1. Let x ∈ S be a sequence with yn = 0, and let Ax
0 be the set of

algorithms with zn = 0 for s. If A ∈ Ax
0 , then A has a constant regret at either

time n or time 2n or at both.

We are now ready to return to the non-balanced setting in which yn and zn may
take on values other than 0. Here we use the fact that there exists a sequence in
S for which the average reward is at least 1/4+δ−O(1/n) and for which yn and
zn are small. The next lemma shows that standard deviation of an algorithm
A on sequences in Sδ

A is high at time n. The proof, which is omitted, uses the
fact that such sequences and algorithm can be changed with almost no effect on
average reward and standard deviation to balanced sequence, for which we know
the standard deviation of any algorithm must be high.

Lemma 8. Let δ be any positive constant, A be any algorithm, and x be a
sequence in Sδ

A. Then σn(A,x) ≥ 4δ
3 −O

(√
ln(n)/n

)
.

We are ready to prove the main theorem of the section.
Proof: [Theorem 2] Let δ be any positive constant. If R̄n(A,D) < 1/4+ δ, then
there must be a sequence x ∈ S with yn ≤

√
2n ln(2n) and R̄n(A,x) < 1/4 + δ.

Then the regret of A at time 2n will be at least 1− 1/
√

2− 1/4− δ −O(1/n).
If, on the other hand, R̄n(A,D) ≥ 1/4 + δ, then by Lemma 4 there exists a

sequence x ∈ S such that R̄n(A,x) ≥ 1/4+δ−O(1/n). By Lemma 8, σn(A,x) ≥
4/3δ − O

(√
ln(n)/n

)
, and thus the algorithm has regret at time n of at least

δ/3 − O
(√

ln(n)/n
)
. This shows that for any δ we have that either the regret

at time n is constant or the regret at time 2n is constant. ��

Risk-Sensitive Online Learning 213

C Proof of Theorem 4

The following facts about the behavior of ln(1 + z) for small z will be useful.

Lemma 9. For any L > 2 and any v, y, and z such that |v|, |y|, |v + y|, and
|z| are all bounded by 1/L we have the following

z − (3L+ 2)z2

6L
< ln(1 + z) < z − (3L− 2)z2

6L

ln(1 + v) +
Ly

L + 1
< ln(1 + v + y) < ln(1 + v) +

Ly

L− 1

Similar to the analysis in [5], we bound ln W̃n+1

W̃1
from above and below.

Lemma 10. For the algorithm Prod with η = 1/(LM) ≤ 1/4 where L > 2,

ln
W̃n+1

W̃1
≤ ηLRn(A,x)

L− 1
− η2(3L− 2)nV arn(A,x)

6L

at any time n for sequence x with the absolute value of rewards bounded by M .

Proof: Similarly to [5] we obtain,

ln
W̃n+1

W̃1
=

n∑
t=1

ln
W̃t+1

W̃t

=
n∑

t=1

ln

(
K∑

k=1

w̃k
t

W̃t

(1 + ηxk
t)

)
=

n∑
t=1

ln(1 + ηxA
t)

=
n∑

t=1

ln(1 + η(xA
t − R̄n(A,x) + R̄n(A,x)))

Now using Lemma 9 twice we obtain the proof. ��
Next we bound ln W̃n+1

W̃1
from below. The proof is based on similar arguments to

the previous lemma and the observation made in [5] that ln W̃n+1

W̃1
≥ ln

(
w̃k

n+1
K

)
,

and is thus omitted.

Lemma 11. For the algorithm Prod with η = 1/LM where L > 2, for any
expert k ∈ K the following is satisfied

ln
W̃n+1

W̃1
≥ − lnK +

ηLRn(k,x)
L + 1

− η2(3L+ 2)nV arn(k,x)
6L

at any time n for any sequence x with rewards absolute values bounded by M .

Combining the two lemmas we obtain Theorem 4.

Leading Strategies
in Competitive On-Line Prediction

Vladimir Vovk

Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

vovk@cs.rhul.ac.uk

Abstract. We start from a simple asymptotic result for the problem of
on-line regression with the quadratic loss function: the class of contin-
uous limited-memory prediction strategies admits a “leading prediction
strategy”, which not only asymptotically performs at least as well as any
continuous limited-memory strategy but also satisfies the property that
the excess loss of any continuous limited-memory strategy is determined
by how closely it imitates the leading strategy. More specifically, for any
class of prediction strategies constituting a reproducing kernel Hilbert
space we construct a leading strategy, in the sense that the loss of any
prediction strategy whose norm is not too large is determined by how
closely it imitates the leading strategy. This result is extended to the loss
functions given by Bregman divergences and by strictly proper scoring
rules.

For the only way to compete is to
imitate the leader. . .

Jacques Ellul

1 Introduction

Suppose F is a normed function class of prediction strategies (the “benchmark
class”). It is well known that, under some restrictions on F , there exists a “master
prediction strategy” (sometimes also called a “universal strategy”) that performs
almost as well as the best strategies in F whose norm is not too large (see,
e.g., [6, 2]). The “leading prediction strategies” constructed in this paper satisfy
a stronger property: the loss of any prediction strategy in F whose norm is
not too large exceeds the loss of a leading strategy by the divergence between
the predictions output by the two prediction strategies. Therefore, the leading
strategy implicitly serves as a standard for prediction strategies F in F whose
norm is not too large: such a prediction strategy F suffers a small loss to the
degree that its predictions resemble the leading strategy’s predictions, and the
only way to compete with the leading strategy is to imitate it.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 214–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Leading Strategies in Competitive On-Line Prediction 215

We start the formal exposition with a simple asymptotic result (Proposition
1 in §2) asserting the existence of leading strategies in the problem of on-line
regression with the quadratic loss function for the class of continuous limited-
memory prediction strategies. To state a non-asymptotic version of this result
(Proposition 2) we introduce several general definitions that are used throughout
the paper. In the following two sections Proposition 2 is generalized in two di-
rections, to the loss functions given by Bregman divergences (§3) and by strictly
proper scoring rules (§4). Competitive on-line prediction typically avoids making
any stochastic assumptions about the way the observations are generated, but
in §5 we consider, mostly for comparison purposes, the case where observations
are generated stochastically. That section contains most of the references to the
related literature, although there are bibliographical remarks scattered through-
out the paper. Some proofs and proof sketches are given in §6, and the rest can
be found in the full version of this paper, [31]. The final section, §7, discusses
possible directions of further research.

There are many techniques for constructing master strategies, such as gradi-
ent descent, strong and weak aggregating algorithms, following the perturbed
leader, defensive forecasting, to mention just a few. In this paper we will use de-
fensive forecasting (proposed in [26] and based on [34, 27] and much earlier work
by Levin, Foster, and Vohra). The master strategies constructed using defen-
sive forecasting automatically satisfy the stronger properties required of leading
strategies; on the other hand, it is not clear whether leading strategies can be
constructed using other techniques.

2 On-Line Quadratic-Loss Regression

Our general prediction protocol is:

On-line prediction protocol
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Predictor announces μn ∈ P.
Reality announces yn ∈ Y.

END FOR.

At the beginning of each round n Forecaster is given some side information xn

relevant to predicting the following observation yn, after which he announces
his prediction μn. The side information is taken from the information space
X, the observations from the observation space Y, and the predictions from
the prediction space P. The error of prediction is measured by a loss function
λ : Y ×P→ IR, so that λ(yn, μn) is the loss suffered by Predictor on round n.

A prediction strategy is a strategy for Predictor in this protocol. More explic-
itly, each prediction strategy F maps each sequence

s = (x1, y1, . . . , xn−1, yn−1, xn) ∈ S :=
∞⋃

n=1

(X×Y)n−1 ×X (1)

216 V. Vovk

to a prediction F (s) ∈ IR; we will call S the situation space and its elements
situations. We will sometimes use the notation

sn := (x1, y1, . . . , xn−1, yn−1, xn) ∈ S, (2)

where xi and yi are Reality’s moves in the on-line prediction protocol.
In this section we will always assume that Y = [−Y, Y] for some Y > 0,

[−Y, Y] ⊆ P ⊆ IR, and λ(y, μ) = (y − μ)2; in other words, we will consider the
problem of on-line quadratic-loss regression (with the observations bounded in
absolute value by a known constant Y).

Asymptotic Result

Let k be a positive integer. We say that a prediction strategy F is order k Markov
if F (sn) depends on (2) only via xmax(1,n−k), ymax(1,n−k), . . . , xn−1, yn−1, xn.
More explicitly, F is order k Markov if and only if there exists a function

f : (X×Y)k ×X→ P

such that, for all n > k and all (2),

F (sn) = f(xn−k, yn−k, . . . , xn−1, yn−1, xn).

A limited-memory prediction strategy is a prediction strategy which is order k
Markov for some k. (The expression “Markov strategy” being reserved for “order
0 Markov strategy”.)

Proposition 1. Let Y = P = [−Y, Y] and X be a metric compact. There exists
a strategy for Predictor that guarantees

1
N

N∑
n=1

(yn − μn)2 +
1
N

N∑
n=1

(μn − φn)2 − 1
N

N∑
n=1

(yn − φn)2 → 0 (3)

as N → ∞ for the predictions φn output by any continuous limited-memory
prediction strategy.

The strategy whose existence is asserted by Proposition 1 is a leading strategy
in the sense discussed in §1: the average loss of a continuous limited-memory
strategy F is determined by how well it manages to imitate the leading strategy.
And once we know the predictions made by F and by the leading strategy, we
can find the excess loss of F over the leading strategy without need to know the
actual observations.

Leading Strategies for Reproducing Kernel Hilbert Spaces

In this subsection we will state a non-asymptotic version of Proposition 1. Since
P = IR is a vector space, the sum of two prediction strategies and the product of
a scalar (i.e., real number) and a prediction strategy can be defined pointwise:

(F1 + F2)(s) := F1(s) + F2(s), (cF)(s) := cF (s), s ∈ S.

Leading Strategies in Competitive On-Line Prediction 217

Let F be a Hilbert space of prediction strategies (with the pointwise operations
of addition and multiplication by scalar). Its embedding constant cF is defined
by

cF := sup
s∈S

sup
F∈F :‖F‖F≤1

|F (s)| . (4)

We will be interested in the case cF < ∞ and will refer to F satisfying this
condition as reproducing kernel Hilbert spaces (RKHS) with finite embedding
constant. (More generally, F is said to be an RKHS if the internal supremum
in (4) is finite for each s ∈ S.) In our informal discussions we will be assuming
that cF is a moderately large constant.

Proposition 2. Let Y = [−Y, Y], P = IR, and F be an RKHS of prediction
strategies with finite embedding constant cF . There exists a strategy for Predictor
that guarantees

∣∣∣∣∣
N∑

n=1

(yn − μn)2 +
N∑

n=1

(μn − φn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

≤ 2Y
√

c2
F + 1 (‖F‖F + Y)

√
N, ∀N ∈ {1, 2, . . .} ∀F ∈ F , (5)

where φn are F ’s predictions, φn := F (sn).

For an F whose norm is not too large (i.e., F satisfying ‖F‖F � N1/2), (5)
shows that

1
N

N∑
n=1

(yn − φn)2 ≈ 1
N

N∑
n=1

(yn − μn)2 +
1
N

N∑
n=1

(μn − φn)2 .

Proposition 1 is obtained by applying Proposition 2 to large (“universal”)
RKHS. The details are given in [31], and here we will only demonstrate this
idea with a simple but non-trivial example. Let k and m be positive integer
constants such that m > k/2. A prediction strategy F will be included in F if
its predictions φn satisfy

φn =

{
0 if n ≤ k

f(yn−k, . . . , yn−1) otherwise,

where f is a function from the Sobolev space Wm,2([−Y, Y]k) (see, e.g., [1] for the
definition and properties of Sobolev spaces); ‖F‖F is defined to be the Sobolev
norm of f . Every continuous function of (yn−k, . . . , yn−1) can be arbitrarily well
approximated by functions in Wm,2([−Y, Y]k), and so F is a suitable class of
prediction strategies if we believe that neither x1, . . . , xn nor y1, . . . , yn−k−1 are
useful in predicting yn.

218 V. Vovk

Very Large Benchmark Classes

Some interesting benchmark classes of prediction strategies are too large to equip
with the structure of RKHS [30]. However, an analogue of Proposition 2 can also
be proved for some Banach spaces F of prediction strategies (with the pointwise
operations of addition and multiplication by scalar) for which the constant cF
defined by (4) is finite. The modulus of convexity of a Banach space U is defined
as the function

δU (ε) := inf
u,v∈SU

‖u−v‖U =ε

(
1−

∥∥∥∥u + v

2

∥∥∥∥
U

)
, ε ∈ (0, 2],

where SU := {u ∈ U |‖u‖U = 1} is the unit sphere in U .
The existence of leading strategies (in a somewhat weaker sense than in Propo-

sition 2) is asserted in the following result.

Proposition 3. Let Y = [−Y, Y], P = IR, and F be a Banach space of predic-
tion strategies having a finite embedding constant cF (see (4)) and satisfying

∀ε ∈ (0, 2] : δF (ε) ≥ (ε/2)p/p

for some p ∈ [2,∞). There exists a strategy for Predictor that guarantees∣∣∣∣∣
N∑

n=1

(yn − μn)2 +
N∑

n=1

(μn − φn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

≤ 40Y
√

c2
F + 1 (‖F‖F + Y)N1−1/p, ∀N ∈ {1, 2, . . .} ∀F ∈ F , (6)

where φn are F ’s predictions.

The example of a benchmark class of prediction strategies given after Proposition
2 but with f ranging over the Sobolev space W s,p([−Y, Y]k), s > k/p, is covered
by this proposition. The parameter s describes the “degree of regularity” of the
elements of W s,p, and taking sufficiently large p we can reach arbitrarily irregular
functions in the Sobolev hierarchy.

3 Predictions Evaluated by Bregman Divergences

A predictable process is a function F mapping the situation space S to IR, F :
S → IR. Notice that for any function ψ : P → IR and any prediction strategy
F the composition ψ(F) (mapping each situation s to ψ(F (s))) is a predictable
process; such compositions will be used in Theorems 1–3 below. A Hilbert space
F of predictable processes (with the usual pointwise operations) is called an
RKHS with finite embedding constant if (4) is finite.

The notion of Bregman divergence was introduced in [5], and is now widely
used in competitive on-line prediction (see, e.g., [14, 3, 15, 17, 7]). Suppose Y =
P ⊆ IR (although it would be interesting to extend Theorem 1 to the case where

Leading Strategies in Competitive On-Line Prediction 219

IR is replaced by any Euclidean, or even Hilbert, space). Let Ψ and Ψ ′ be two
real-valued functions defined on Y. The expression

dΨ,Ψ ′(y, z) := Ψ(y)− Ψ(z)− Ψ ′(z)(y − z), y, z ∈ Y, (7)

is said to be the corresponding Bregman divergence if dΨ,Ψ ′(y, z) > 0 when-
ever y �= z. (Bregman divergence is usually defined for y and z ranging over a
Euclidean space.) In all our examples Ψ will be a strictly convex continuously
differentiable function and Ψ ′ its derivative, in which case we abbreviate dΨ,Ψ ′

to dΨ .
We will be using the standard notation

‖f‖C(A) := sup
y∈A

|f(y)| ,

where A is a subset of the domain of f .

Theorem 1. Suppose Y = P is a bounded subset of IR. Let F be an RKHS of
predictable processes with finite embedding constant cF and Ψ, Ψ ′ be real-valued
functions on Y = P. There exists a strategy for Predictor that guarantees, for
all prediction strategies F and N = 1, 2, . . .,∣∣∣∣∣

N∑
n=1

dΨ,Ψ ′ (yn, μn) +
N∑

n=1

dΨ,Ψ ′ (μn, φn)−
N∑

n=1

dΨ,Ψ ′ (yn, φn)

∣∣∣∣∣
≤ diam(Y)

√
c2
F + 1

(
‖Ψ ′(F)‖F + ‖Ψ ′‖C(Y)

)√
N, (8)

where φn are F ’s predictions.

The expression ‖Ψ ′(F)‖F in (8) is interpreted as∞ when Ψ ′(F) /∈ F ; in this case
(8) holds vacuously. Similar conventions will be made in all following statements.

Two of the most important Bregman divergences are obtained from the convex
functions Ψ(y) := y2 and Ψ(y) := y ln y + (1 − y) ln(1 − y) (negative entropy,
defined for y ∈ (0, 1)); they are the quadratic loss function

dΨ (y, z) = (y − z)2 (9)

and the relative entropy (also known as the Kullback–Leibler divergence)

dΨ (y, z) = D(y ‖ z) := y ln
y

z
+ (1− y) ln

1− y

1− z
, (10)

respectively. If we apply Theorem 1 to them, (9) leads (assuming Y = [−Y, Y])
to a weaker version of Proposition 2, with the right-hand side of (8) twice as
large as that of (5), and (10) leads to the following corollary.

Corollary 1. Let ε ∈ (0, 1/2), Y = P = [ε, 1− ε], and the loss function be

λ(y, μ) = D(y ‖μ)

220 V. Vovk

(defined in (10)). Let F be an RKHS of predictable processes with finite embed-
ding constant cF . There exists a strategy for Predictor that guarantees, for all
prediction strategies F ,∣∣∣∣∣

N∑
n=1

λ (yn, μn) +
N∑

n=1

λ (μn, φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣
≤
√

c2
F + 1

(∥∥∥∥ln F

1− F

∥∥∥∥
F

+ ln
1− ε

ε

)√
N, ∀N ∈ {1, 2, . . .},

where φn are F ’s predictions.

The log likelihood ratio ln F
1−F appears because Ψ ′(y) = ln y

1−y in this case.
Analogously to Proposition 2, Theorem 1 (as well as Theorems 2–3 in the next

section) can be easily generalized to Banach spaces of predictable processes. One
can also state asymptotic versions of Theorems 1–3 similar to Proposition 1; and
the continuous limited-memory strategies of Proposition 1 could be replaced by
the equally interesting classes of continuous stationary strategies (as in [29]) or
Markov strategies (possibly discontinuous, as in [28]). We will have to refrain
from pursuing these developments in this paper.

4 Predictions Evaluated by Strictly Proper Scoring Rules

In this section we consider the case where Y = {0, 1} and P ⊆ [0, 1]. Every loss
function λ : Y×P→ IR will be extended to the domain [0, 1]×P by the formula

λ(p, μ) := pλ(1, μ) + (1− p)λ(0, μ);

intuitively, λ(p, μ) is the expected loss of the prediction μ when the probability
of y = 1 is p. Let us say that a loss function λ is a strictly proper scoring rule if

∀p, μ ∈ P : p �= μ =⇒ λ(p, p) < λ(p, μ)

(it is optimal to give the prediction equal to the true probability of y = 1 when
the latter is known and belongs to P). In this case the function

dλ(μ, φ) := λ(μ, φ) − λ(μ, μ)

can serve as a measure of difference between predictions μ and φ: it is non-
negative and is zero only when μ = φ. (Cf. [11], §4.)

The exposure of a loss function λ is defined as

Expλ(μ) := λ(1, μ)− λ(0, μ), μ ∈ P.

Theorem 2. Let Y = {0, 1}, P ⊆ [0, 1], λ be a strictly proper scoring rule, and
F be an RKHS of predictable processes with finite embedding constant cF . There

Leading Strategies in Competitive On-Line Prediction 221

exists a strategy for Predictor that guarantees, for all prediction strategies F and
all N = 1, 2, . . .,∣∣∣∣∣

N∑
n=1

λ (yn, μn) +
N∑

n=1

dλ (μn, φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣
≤
√

c2
F + 1
2

(
‖Expλ(F)‖F + ‖Expλ‖C(P)

)√
N, (11)

where φn are F ’s predictions.

Two popular strictly proper scoring rules are the quadratic loss function
λ(y, μ) := (y − μ)2 and the log loss function

λ(y, μ) :=

{
− lnμ if y = 1
− ln(1− μ) if y = 0.

Applied to the quadratic loss function, Theorem 2 becomes essentially a special
case of Proposition 2. For the log loss function we have dλ(μ, φ) = D(μ ‖φ), and
so we obtain the following corollary.

Corollary 2. Let ε ∈ (0, 1/2), Y = {0, 1}, P = [ε, 1 − ε], λ be the log loss
function, and F be an RKHS of predictable processes with finite embedding con-
stant cF . There exists a strategy for Predictor that guarantees, for all prediction
strategies F ,∣∣∣∣∣

N∑
n=1

λ (yn, μn) +
N∑

n=1

D (μn ‖φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣
≤
√

c2
F + 1
2

(∥∥∥∥ln F

1− F

∥∥∥∥
F

+ ln
1− ε

ε

)√
N, ∀N ∈ {1, 2, . . .},

where φn are F ’s predictions.

A weaker version (with the bound twice as large) of Corollary 2 would be a
special case of Corollary 1 were it not for the restriction of the observation space
Y to [ε, 1 − ε] in the latter. Using methods of [26], it is even possible to get rid
of the restriction P = [ε, 1− ε] in Corollary 2. Since the log loss function plays a
fundamental role in information theory (the cumulative loss corresponds to the
code length), we state this result as our next theorem.

Theorem 3. Let Y = {0, 1}, P = (0, 1), λ be the log loss function, and F be an
RKHS of predictable processes with finite embedding constant cF . There exists a
strategy for Predictor that guarantees, for all prediction strategies F ,∣∣∣∣∣

N∑
n=1

λ (yn, μn) +
N∑

n=1

D (μn ‖φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣
≤
√

c2
F + 1.8
2

(∥∥∥∥ln F

1− F

∥∥∥∥
F

+ 1
)√

N, ∀N ∈ {1, 2, . . .},

where φn are F ’s predictions.

222 V. Vovk

5 Stochastic Reality and Jeffreys’s Law

In this section we revert to the quadratic regression framework of §2 and assume
Y = P = [−Y, Y], λ(y, μ) = (y − μ)2. (It will be clear that similar results
hold for Bregman divergences and strictly proper scoring rules, but we stick to
the simplest case since our main goal in this section is to discuss the related
literature.)

Proposition 4. Suppose Y = P = [−Y, Y]. Let F be a prediction strategy and
yn ∈ [−Y, Y] be generated as yn := F (sn) + ξn (remember that sn are defined
by (2)), where the noise random variables ξn have expected value zero given sn.
For any other prediction strategy G, any N ∈ {1, 2, . . .}, and any δ ∈ (0, 1),∣∣∣∣∣

N∑
n=1

(yn − φn)2 +
N∑

n=1

(φn − μn)2 −
N∑

n=1

(yn − μn)2
∣∣∣∣∣ ≤ 4Y 2

√
2 ln

2
δ

√
N (12)

with probability at least 1 − δ, where φn are F ’s predictions and μn are G’s
predictions.

Combining Proposition 4 with Proposition 2 we obtain the following corollary.

Corollary 3. Suppose Y = P = [−Y, Y]. Let F be an RKHS of prediction
strategies with finite embedding constant cF , G be a prediction strategy whose
predictions μn are guaranteed to satisfy (5) (a “leading prediction strategy”), F
be a prediction strategy in F , and yn ∈ [−Y, Y] be generated as yn := F (sn)+ξn,
where the noise random variables ξn have expected value zero given sn. For any
N ∈ {1, 2, . . .} and any δ ∈ (0, 1), the conjunction of

∣∣∣∣∣
N∑

n=1

(yn − μn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

≤ Y
√

c2
F + 1 (‖F‖F + Y)

√
N + 2Y 2

√
2 ln

2
δ

√
N (13)

and

N∑
n=1

(φn − μn)2 ≤ Y
√

c2
F + 1 (‖F‖F + Y)

√
N + 2Y 2

√
2 ln

2
δ

√
N (14)

holds with probability at least 1− δ, where φn are F ’s predictions and μn are G’s
predictions.

We can see that if the “true” (in the sense of outputting the true expectations)
strategy F belongs to the RKHS F and ‖F‖F is not too large, not only the
loss of the leading strategy will be close to that of the true strategy, but their
predictions will be close as well.

Leading Strategies in Competitive On-Line Prediction 223

Jeffreys’s Law

In the rest of this section we will explain the connection of this paper with the
phenomenon widely studied in probability theory and the algorithmic theory of
randomness and dubbed “Jeffreys’s law” by Dawid [9, 12]. The general statement
of “Jeffreys’s law” is that two successful prediction strategies produce similar
predictions (cf. [9], §5.2). To better understand this informal statement, we first
discuss two notions of success for prediction strategies.

As argued in [33], there are (at least) two very different kinds of predictions,
which we will call “S-predictions” and “D-predictions”. Both S-predictions and
D-predictions are elements of [−Y, Y] (in our current context), and the prefixes
“S-” and “D-” refer to the way in which we want to evaluate their quality. S-
predictions are Statements about Reality’s behaviour, and they are successful
if they withstand attempts to falsify them; standard means of falsification are
statistical tests (see, e.g., [8], Chapter 3) and gambling strategies ([23]; for a
more recent exposition, see [21]). D-predictions do not claim to be falsifiable
statements about Reality; they are Decisions deemed successful if they lead to
a good cumulative loss.

As an example, let us consider the predictions φn and μn in Proposition 4. The
former are S-predictions; they can be rejected if (12) fails to happen for a small
δ (the complement of (12) can be used as the critical region of a statistical test).
The latter are D-predictions: we are only interested in their cumulative loss. If
φn are successful ((12) holds for a moderately small δ) and μn are successful
(in the sense of their cumulative loss being close to the cumulative loss of the
successful S-predictions φn; this is the best that can be achieved as, by (12), the
latter cannot be much larger than the former), they will be close to each other,
in the sense

∑N
n=1(φn − μn)2 � N . We can see that Proposition 4 implies a

“mixed” version of Jeffreys’s law, asserting the proximity of S-predictions and
D-predictions.

Similarly, Corollary 3 is also a mixed version of Jeffreys’s law: it asserts the
proximity of the S-predictions φn (which are part of our falsifiable model yn =
φn + ξn) and the D-predictions μn (successful in the sense of leading to a good
cumulative loss; cf. (5)).

Proposition 2 immediately implies two “pure” versions of Jeffreys’s laws for
D-predictions:

– if a prediction strategy F with ‖F‖F not too large performs well, in the
sense that its loss is close to the leading strategy’s loss, F ’s predictions will
be similar to the leading strategy’s predictions; more precisely,

N∑
n=1

(φn − μn)2 ≤
N∑

n=1

(yn − φn)2 −
N∑

n=1

(yn − μn)2

+ 2Y
√

c2
F + 1 (‖F‖F + Y)

√
N ;

224 V. Vovk

– therefore, if two prediction strategies F1 and F2 with ‖F1‖F and ‖F2‖F not
too large perform well, in the sense that their loss is close to the leading
strategy’s loss, their predictions will be similar.

It is interesting that the leading strategy can be replaced by a master strategy
for the second version: if F1 and F2 gave very different predictions and both
performed almost as well as the master strategy, the mixed strategy (F1 +F2)/2
would beat the master strategy; this immediately follows from(

φ1 + φ2

2
− y

)2

=
(φ1 − y)2 + (φ2 − y)2

2
−
(
φ1 − φ2

2

)2

,

where φ1 and φ2 are F1’s and F2’s predictions, respectively, and y is the
observation.

The usual versions of Jeffreys’s law are, however, statements about S-
predictions. The quality of S-predictions is often evaluated using universal
statistical tests (as formalized by Martin-Löf [19]) or universal gambling strate-
gies (Levin [18], Schnorr [20]). For example, Theorem 7.1 of [10] and Theorem
3 of [24] state that if two computable S-prediction strategies are both suc-
cessful, their predictions will asymptotically agree. Earlier, somewhat less
intuitive, statements of Jeffreys’s law were given in terms of absolute conti-
nuity of probability measures: see, e.g., [4] and [16]. Solomonoff [22] proved a
version of Jeffreys’s law that holds “on average” (rather than for individual
sequences).

This paper is, to my knowledge, the first to state a version of Jeffreys’s law
for D-predictions (although a step in this direction was made in Theorem 8 of
[25]).

6 Proofs

In this section we prove Propositions 2–3 and give proof sketches of Theorems
1–2. For the rest of the proofs, see [31].

Proof of Propositions 2 and 3

Noticing that∣∣∣∣∣
N∑

n=1

(yn − μn)2 +
N∑

n=1

(μn − φn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

= 2

∣∣∣∣∣
N∑

n=1

(φn − μn) (yn − μn)

∣∣∣∣∣
≤ 2

∣∣∣∣∣
N∑

n=1

μn (yn − μn)

∣∣∣∣∣+ 2

∣∣∣∣∣
N∑

n=1

φn (yn − μn)

∣∣∣∣∣ , (15)

Leading Strategies in Competitive On-Line Prediction 225

we can use the results of [32], §6, asserting the existence of a prediction strategy
producing predictions μn ∈ [−Y, Y] that satisfy∣∣∣∣∣

N∑
n=1

μn (yn − μn)

∣∣∣∣∣ ≤ Y 2
√

c2
F + 1

√
N (16)

(see (24) in [32]; this a special case of good calibration) and∣∣∣∣∣
N∑

n=1

φn (yn − μn)

∣∣∣∣∣ ≤ Y
√

c2
F + 1 ‖F‖F

√
N (17)

(see (25) in [32]; this a special case of good resolution).
Replacing (16) and (17) with the corresponding statements for Banach func-

tion spaces ([30], (52) and (53)) we obtain the proof of Proposition 3.

Remark. In [32] we considered only prediction strategies F for which F (sn)
depends on sn (see (2)) via xn; in the terminology of this paper these are (order
0) Markov strategies. It is easy to see that considering only Markov strategies
does not lead to a loss of generality: if we redefine the object xn as xn := sn,
any prediction strategy will become a Markov prediction strategy.

Proof Sketch of Theorem 1

The proof is based on the generalized law of cosines

dΨ,Ψ ′(y, φ) = dΨ,Ψ ′(μ, φ) + dΨ,Ψ ′(y, μ)− (Ψ ′(φ) − Ψ ′(μ)) (y − μ) (18)

(which follows directly from the definition (7)). From (18) we deduce∣∣∣∣∣
N∑

n=1

dΨ,Ψ ′ (yn, μn) +
N∑

n=1

dΨ,Ψ ′ (μn, φn)−
N∑

n=1

dΨ,Ψ ′ (yn, φn)

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

(Ψ ′(φn)− Ψ ′(μn)) (yn − μn)

∣∣∣∣∣
≤
∣∣∣∣∣

N∑
n=1

Ψ ′(μn) (yn − μn)

∣∣∣∣∣+
∣∣∣∣∣

N∑
n=1

Ψ ′(φn) (yn − μn)

∣∣∣∣∣ . (19)

The rest of the proof is based on generalizations of (16) and (17).

Proof Sketch of Theorem 2

The proof is similar to that of Theorem 1, with the role of the generalized law
of cosines (18) played by the equation

λ(y, φ) = a + λ(y, μ) + b(y − μ) (20)

226 V. Vovk

for some a = a(μ, φ) and b = b(μ, φ). Since y can take only two possible values,
suitable a and b are easy to find: it suffices to solve the linear system{

λ(1, φ) = a + λ(1, μ) + b(1− μ)
λ(0, φ) = a + λ(0, μ) + b(−μ).

Subtracting these equations we obtain b = Exp(φ)−Exp(μ) (abbreviating Expλ

to Exp), which in turn gives a = dλ(μ, φ). Therefore, (20) gives∣∣∣∣∣
N∑

n=1

λ (yn, μn) +
N∑

n=1

dλ (μn, φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

(Exp(φn)− Exp(μn)) (yn − μn)

∣∣∣∣∣
≤
∣∣∣∣∣

N∑
n=1

Exp(μn) (yn − μn)

∣∣∣∣∣+
∣∣∣∣∣

N∑
n=1

Exp(φn) (yn − μn)

∣∣∣∣∣ . (21)

The rest of the proof is based on different generalizations of (16) and (17).

7 Conclusion

The existence of master strategies (strategies whose loss is less than or close to
the loss of any strategy with not too large a norm) can be shown for a very wide
class of loss functions. On the contrary, leading strategies appear to exist for a
rather narrow class of loss functions. It would be very interesting to delineate the
class of loss functions for which a leading strategy does exist. In particular, does
this class contain any loss functions except Bregman divergences and strictly
proper scoring rules?

Even if a leading strategy does not exist, one might look for a strategy G such
that the loss of any strategy F whose norm is not too large lies between the loss
of G plus some measure of difference between F ’s and G’s predictions and the
loss of G plus another measure of difference between F ’s and G’s predictions.

Acknowledgments

I am grateful to the anonymous referees for their comments. This work was
partially supported by MRC (grant S505/65).

References

1. Robert A. Adams and John J. F. Fournier. Sobolev Spaces, volume 140 of Pure
and Applied Mathematics. Academic Press, Amsterdam, second edition, 2003.

2. Peter Auer, Nicolò Cesa-Bianchi, and Claudio Gentile. Adaptive and self-confident
on-line learning algorithms. Journal of Computer and System Sciences, 64:48–75,
2002.

Leading Strategies in Competitive On-Line Prediction 227

3. Katy S. Azoury and Manfred K. Warmuth. Relative loss bounds for on-line density
estimation with the exponential family of distributions. Machine Learning, 43:211–
246, 2001.

4. David Blackwell and Lester Dubins. Merging of opinions with increasing informa-
tion. Annals of Mathematical Statistics, 33:882–886, 1962.

5. Lev M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Physics, 7:200–217, 1967.

6. Nicolò Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-case
quadratic loss bounds for on-line prediction of linear functions by gradient descent.
IEEE Transactions on Neural Networks, 7:604–619, 1996.

7. Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, Cambridge, 2006.

8. David R. Cox and David V. Hinkley. Theoretical Statistics. Chapman and Hall,
London, 1974.

9. A. Philip Dawid. Statistical theory: the prequential approach. Journal of the Royal
Statistical Society A, 147:278–292, 1984.

10. A. Philip Dawid. Calibration-based empirical probability (with discussion). Annals
of Statistics, 13:1251–1285, 1985.

11. A. Philip Dawid. Proper measures of discrepancy, uncertainty and dependence,
with applications to predictive experimental design. Technical Report 139, De-
partment of Statistical Science, University College London, November 1994. This
technical report was revised (and its title was slightly changed) in August 1998.

12. A. Philip Dawid. Probability, causality and the empirical world: a Bayes–de
Finetti–Popper–Borel synthesis. Statistical Science, 19:44–57, 2004.

13. Jacques Ellul. The Technological Bluff. Eerdmans, Grand Rapids, MI, 1990. Trans-
lated by Geoffrey W. Bromiley. The French original: Le bluff technologique, Ha-
chette, Paris, 1988.

14. David P. Helmbold, Jyrki Kivinen, and Manfred K. Warmuth. Relative loss bounds
for single neurons. IEEE Transactions on Neural Networks, 10:1291–1304, 1999.

15. Mark Herbster and Manfred K. Warmuth. Tracking the best linear predictor.
Journal of Machine Learning Research, 1:281–309, 2001.

16. Yury M. Kabanov, Robert Sh. Liptser, and Albert N. Shiryaev. To the question
of absolute continuity and singularity of probability measures (in Russian). Mate-
maticheskii Sbornik, 104:227–247, 1977.

17. Jyrki Kivinen and Manfred K. Warmuth. Relative loss bounds for multidimensional
regression problems. Machine Learning, 45:301–329, 2001.

18. Leonid A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady,
14:1413–1416, 1973.

19. Per Martin-Löf. The definition of random sequences. Information and Control,
9:602–619, 1966.

20. Claus P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Springer, Berlin, 1971.
21. Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s Only a Game!

Wiley, New York, 2001.
22. Ray J. Solomonoff. Complexity-based induction systems: comparisons and con-

vergence theorems. IEEE Transactions on Information Theory, IT-24:422–432,
1978.

23. Jean Ville. Etude critique de la notion de collectif. Gauthier-Villars, Paris, 1939.
24. Vladimir Vovk. On a randomness criterion. Soviet Mathematics Doklady, 35:656–

660, 1987.

228 V. Vovk

25. Vladimir Vovk. Probability theory for the Brier game. Theoretical Computer
Science, 261:57–79, 2001. Conference version in Ming Li and Akira Maruoka,
editors, Algorithmic Learning Theory, volume 1316 of Lecture Notes in Computer
Science, pages 323–338, 1997.

26. Vladimir Vovk. Defensive prediction with expert advice. In Sanjay Jain, Hans Ul-
rich Simon, and Etsuji Tomita, editors, Proceedings of the Sixteenth International
Conference on Algorithmic Learning Theory, volume 3734 of Lecture Notes in Ar-
tificial Intelligence, pages 444–458, Berlin, 2005. Springer. Full version: Technical
Report arXiv:cs.LG/0506041 “Competitive on-line learning with a convex loss
function” (version 3), arXiv.org e-Print archive, September 2005.

27. Vladimir Vovk. Non-asymptotic calibration and resolution. In Sanjay Jain,
Hans Ulrich Simon, and Etsuji Tomita, editors, Proceedings of the Sixteenth In-
ternational Conference on Algorithmic Learning Theory, volume 3734 of Lec-
ture Notes in Artificial Intelligence, pages 429–443, Berlin, 2005. Springer. A
version of this paper can be downloaded from the arXiv.org e-Print archive
(arXiv:cs.LG/0506004).

28. Vladimir Vovk. Competing with Markov prediction strategies. Technical report,
arXiv.org e-Print archive, July 2006.

29. Vladimir Vovk. Competing with stationary prediction strategies. Technical Report
arXiv:cs.LG/0607067, arXiv.org e-Print archive, July 2006.

30. Vladimir Vovk. Competing with wild prediction rules. In Gabor Lugosi and
Hans Ulrich Simon, editors, Proceedings of the Nineteenth Annual Conference on
Learning Theory, volume 4005 of Lecture Notes in Artificial Intelligence, pages 559–
573, Berlin, 2006. Springer. Full version: Technical Report arXiv:cs.LG/0512059
(version 2), arXiv.org e-Print archive, January 2006.

31. Vladimir Vovk. Leading strategies in competitive on-line prediction. Technical
Report arXiv:cs.LG/0607134, arXiv.org e-Print archive, July 2006. The full
version of this paper.

32. Vladimir Vovk. On-line regression competitive with reproducing kernel Hilbert
spaces. Technical Report arXiv:cs.LG/0511058 (version 2), arXiv.org e-Print
archive, January 2006. Extended abstract in Jin-Yi Cai, S. Barry Cooper, and
Angsheng Li, editors, Theory and Applications of Models of Computation. Pro-
ceedings of the Third Annual Conference on Computation and Logic, volume 3959
of Lecture Notes in Computer Science, pages 452–463, Berlin, 2006. Springer.

33. Vladimir Vovk. Predictions as statements and decisions. In Gabor Lugosi and
Hans Ulrich Simon, editors, Proceedings of the Nineteenth Annual Conference on
Learning Theory, volume 4005 of Lecture Notes in Artificial Intelligence, page 4,
Berlin, 2006. Springer. Full version: Technical Report arXiv:cs.LG/0606093,
arXiv.org e-Print archive, June 2006.

34. Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecasting. In
Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the Tenth In-
ternational Workshop on Artificial Intelligence and Statistics, pages 365–372. So-
ciety for Artificial Intelligence and Statistics, 2005. Available electronically at
http://www.gatsby.ucl.ac.uk/aistats/.

Hannan Consistency in On-Line Learning
in Case of Unbounded Losses Under Partial

Monitoring�,��

Chamy Allenberg1, Peter Auer2, László Györfi3, and György Ottucsák3

1 School of Computer Science
Tel Aviv University

Tel Aviv, Israel, 69978
chamy a@netvision.net.il

2 Chair for Information Technology
University of Leoben

Leoben, Austria, A-8700
auer@unileoben.ac.at

3 Department of Computer Science and Information Theory
Budapest University of Technology and Economics,

Magyar Tudósok körútja 2., Budapest, Hungary, H-1117
{gyorfi, oti}@szit.bme.hu

Abstract. In this paper the sequential prediction problem with expert
advice is considered when the loss is unbounded under partial monitoring
scenarios. We deal with a wide class of the partial monitoring problems:
the combination of the label efficient and multi-armed bandit problem,
that is, where the algorithm is only informed about the performance
of the chosen expert with probability ε ≤ 1. For bounded losses an
algorithm is given whose expected regret scales with the square root of
the loss of the best expert. For unbounded losses we prove that Hannan
consistency can be achieved, depending on the growth rate of the average
squared losses of the experts.

1 Introduction

In on-line (often referred also as sequential) prediction problems in general, an
algorithm has to perform a sequence of actions. After each action, the algo-
rithm suffers some loss, depending on the response of the environment. Its goal
is to minimize its cumulative loss over a sufficiently long period of time. In the
adversarial setting no probabilistic assumption is made on how the losses corre-
sponding to different actions are generated. In particular, the losses may depend
on the previous actions of the algorithm, whose goal is to perform well relative
to a set of experts for any possible behavior of the environment. More precisely,
the aim of the algorithm is to achieve asymptotically the same average loss (per
round) as the best expert.

� We would like to thank Gilles Stoltz and András György for useful comments.
�� This research was supported in part by the Hungarian Inter-University Center for

Telecommunications and Informatics (ETIK).

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 229–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

230 C. Allenberg et al.

In most of the machine learning literature, one assumes that the loss is
bounded, and such a bound is known in advance, when designing an algorithm.
In many applications, including regression problems (Györfi and Lugosi [9]) or
routing in communication networks (cf. György and Ottucsák [11]) the loss is
unbounded. In the latter one the algorithm tries to minimize the average end-
to-end loss between two dedicated nodes of the network, where the loss can be
any quality of service measures, e.g. delay or the number of hops. The delay
can be arbitrarily large in case of nearly exponential delay distributions or link
failures or substantially changing traffic scenarios. The main aim of this paper
is to show Hannan consistency of on-line algorithms for unbounded losses under
partial monitoring.

The first theoretical results concerning sequential prediction (decision) are
due to Blackwell [2] and Hannan [12], but they were rediscovered by the learn-
ing community only in the 1990’s, see, for example, Vovk [16], Littlestone and
Warmuth [14] and Cesa-Bianchi et al. [3]. These results show that it is possible to
construct algorithms for on-line (sequential) decision that predict almost as well
as the best expert. The main idea of these algorithms is the same: after observ-
ing the past performance of the experts, in each step the decision of a randomly
chosen expert is followed such that experts with superior past performance are
chosen with higher probability.

However, in certain type of problems it is not possible to obtain all the losses
corresponding to the decisions of the experts. Throughout the paper we use this
framework in which the algorithm has a limited access to the losses. For example,
in the so called multi-armed bandit problem the algorithm has only information
on the loss of the chosen expert, and no information is available about the loss
it would have suffered had it made a different decision (see, e.g., Auer et al. [1],
Hart and Mas Colell [13]). Another example is label efficient prediction, where
it is expensive to obtain the losses of the experts, and therefore the algorithm
has the option to query this information (see Cesa-Bianchi et. al [5]). Finally the
combination of the label efficient and the multi-armed bandit problem, where
after choosing a decision, the algorithm learns its own loss if and only if it asks
for it (see György and Ottucsák [11]).

Cesa-Bianchi et. al. [7] studied second-order bounds for exponentially weighted
average forecaster and they analyzed the expected regret of the algorithm in full
monitoring and in partial monitoring cases when the bound of the loss function is
unknown. Poland and Hutter [15] dealt with unbounded losses in bandit setting
and an algorithm was presented based on the follow the perturbed leader method,
however we managed to improve significantly their result.

2 Sequential Prediction and Partial Monitoring Models

The on-line decision problem considered in this paper is described as follows.
Suppose an algorithm has to make a sequence of actions. At each time instant
t = 1, 2, . . ., an action at ∈ A is made, where A denotes the action space. Then,
based on the state of the environment yt ∈ Y, where Y is some state space,
the algorithm suffers some loss (at, yt) with loss function : A × Y → R+.

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 231

The performance of the algorithm is evaluated relative to a set of experts, and
its goal is to perform asymptotically as well as the best expert. Formally, given
N experts, at each time instant t, for every i = 1, . . . , N , expert i chooses an
action fi,t ∈ A, and suffers loss (fi,t, yt). We assume that the action space
is finite, therefore we consider algorithms that follow the advice of one of the
experts, that is, fIt,t for some It, where It ∈ {1, . . . , N} is a random variable.
The distribution of It is generated by the algorithm. It only depends on the past
losses (fi,t−1, yt), . . . , (fi,1, y1) for all i and the earlier choices of the algorithm
It−1, . . . , I1. For convenience we use the notations i,t instead of (fi,t, yt) and
It,t instead of (fIt,t, yt).

Formally, at each time instance t = 1, 2, . . .,

1. the environment decides on the losses i,t ≥ 0 of the experts i ∈ {1, . . . , N},
2. the algorithm chooses an expert It ∈ {1, . . . , N},
3. the algorithm suffers loss It,t,
4. the algorithm receives some feedback on his loss and the losses of the experts.

After n rounds the loss of the algorithm and the loss of the experts are

L̂n =
n∑

t=1

It,t and Li,n =
n∑

t=1

i,t,

and the performance of the algorithm is measured by its regret, L̂n −mini Li,n,

or by its regret per round, 1
n

(
L̂n −mini Li,n

)
. An algorithm is Hannan consis-

tent [12], if

lim sup
n→∞

1
n

(
L̂n −min

i
Li,n

)
≤ 0 a.s.

The performance of any expert algorithm obviously depends on how much
information is available to the algorithm about the experts’ and its own perfor-
mance. Next we show the most important classes of partial monitoring according
to the amount of the information available to the algorithm.

– Full information (FI) case: the algorithm knows the losses i,t of all experts.
– Multi-armed bandit (MAB) problem: only the loss of the chosen expert

is revealed to the algorithm, i.e., only It,t is known.
– Label efficient (LE) setting: the algorithm tosses a coin St whether to query

for the losses.1 If St = 1 (with probability εt) then the algorithm knows all
i,t, i = 1, . . . , n, otherwise it does not.

– Combination of the label efficient and multi-armed bandit
(LE+MAB) setting: the algorithm queries with probability εt only about
the loss of the chosen expert, It,t.

Throughout the paper we focus on problem LE+MAB because all of the other
problems mentioned above are “easier”: if an algorithm is Hannan consistent for
problem LE+MAB, then it is Hannan consistent for the other cases, too.

1 It is easy to see that in order to achieve a nontrivial performance, the algorithm
must use randomization in determining whether the losses should be revealed or
not (cf. Cesa-Bianchi and Lugosi [4]).

232 C. Allenberg et al.

3 The Algorithm

In problem LE+MAB, the algorithm learns its own loss only if it chooses to query
it, and it cannot obtain information on the loss of any other expert. For querying
its loss the algorithm uses a sequence S1, S2, . . . of independent Bernoulli random
variables such that

P(St = 1) = εt,

and asks for the loss It,t of the chosen expert It if St = 1, which for constant
εt = ε is identical to the label efficient algorithms in Cesa-Bianchi et al. [5]. We
denote by LE(εt) the label efficient problem with time-varying parameter εt.

We will derive sufficient conditions for Hannan consistency for the com-
bination of the time-varying label efficient and multi-armed bandit problem
(LE(εt)+MAB) and then we will show that this condition can be adapted
straightforwardly to the other cases.

For problem LE(εt)+MAB we use algorithm Green with time-varying learn-
ing rate ηt. Algorithm Green is a variant of the weighted majority (WM) algo-
rithm of Littlestone and Warmuth [14] and it was named after the known phrase:
”The neighbor’s grass is greener”, since Green assumes that the experts it did
not choose had the best possible payoff (the zero loss).

Denote by pi,t the probability of choosing action i at time t in case of the
original WM algorithm, that is,

pi,t =
e−ηtL̃i,t−1∑N

j=1 e
−ηtL̃j,t−1

,

where L̃i,t is so called cumulative estimated loss, which we will specify later. Al-
gorithm Green uses modified probabilities p̃i,t which can be calculated from pi,t,

p̃i,t =

{
0 if pi,t < γt,
ct · pi,t if pi,t ≥ γt,

where ct is the normalizing factor and γt ≥ 0 is a time-varying threshold. Finally,
the algorithm uses estimated losses which are given by

̃i,t =

{
�i,t

p̃i,tεt
if It = i and St = 1;

0 otherwise,

based on György and Ottucsák [11]. Therefore, the estimated loss is an unbiased
estimate of the true loss with respect to its natural filtration, that is,

Et

[
̃i,t

]
def= E

[
̃i,t

∣∣St−1
1 , It−1

1

]
= i,t,

where St−1
1

def= S1, . . . , St−1 and It−1
1

def= I1, . . . , It−1. The cumulative estimated
loss of an expert is given by L̃i,n =

∑n
t=1 ̃i,t. The resulting algorithm is given

in Figure 1.
In all theorems in the sequel we assume that i,t may be a random variable

depending on It−1
1 and St−1

1 .

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 233

Algorithm Green

Let η1, η2, . . . > 0, ε1, ε2, . . . > 0 and γ1, γ2, . . . ≥ 0.

Initialization : L̃i,0 = 0 for all i = 1, . . . , N .

For each round t = 1, 2, . . .

(1) Calculate the probability distribution

pi,t =
e−ηtL̃i,t−1∑N

i=1 e−ηtL̃i,t−1
i = 1, . . . , N .

(2) Calculate the modified probabilities

p̃i,t =

{
0 if pi,t < γt,
ct · pi,t if pi,t ≥ γt,

where ct = 1/
∑

pi,t≥γt
pi,t .

(3) Select an action It ∈ {1, . . . , N} according to p̃t = (p̃1,t, . . . , p̃N,t).
(4) Draw a Bernoulli random variable St such that P(St = 1) = εt.
(5) Compute the estimated loss for all i = 1, . . . , N

�̃i,t =

{
�i,t

p̃i,tεt
if It = i and St = 1;

0 otherwise.

(6) For all i = 1, . . . , N update the cumulative estimated loss

L̃i,t = L̃i,t−1 + �̃i,t.

Fig. 1. Algorithm Green for LE(εt)+MAB

4 Bounds on the Expected Regret

Theorem 1. If 2i,t ≤ tν and εt ≥ t−β for all t, then for all n the expected loss

of algorithm Green with γt = 0 and ηt = 2
√

ln N
N · t−(1+ν+β)/2 is bounded by

E
[
L̂n

]
−min

i
E [Li,n] ≤ 2

√
(N lnN)(n + 1)(1+ν+β)/2.

If the individual losses are bounded by a constant, a much stronger result can
be obtained.

Theorem 2. If i,t ∈ [0, 1] and εt = ε for all t, then for all n with mini Li,n ≤ B
the expected loss of algorithm Green with γt = γ = 1

N(Bε+2) and ηt = η =

2
√

ln N
N

ε
B is bounded by

E
[
L̂n

]
−min

i
E [Li,n] ≤ 4

√
B

ε
N lnN +

N lnN + 2
ε

+
N ln(εB + 1)

ε
.

234 C. Allenberg et al.

Remark 1. The improvement in Theorem 2 is significant, since it bounds the
regret of the algorithm in terms of the loss of the best action and not in respect
to the number of rounds. For example, Theorem 1 is void for mini Li,n �

√
n

whereas Theorem 2 still gives a nearly optimal bound2.

Remark 2. If the magnitude of the losses is not known a-priori, the doubling
trick can be used to set the parameter ν in Theorem 1 and the parameter B
in Theorem 2 with no significant change in the bounds. The generalization of
Theorem 2 to losses in [a, b] is straightforward.

For the proofs we introduce the notations

̌t =
N∑

i=1

p̃i,t̃i,t, t =
N∑

i=1

pi,t̃i,t, and Ln =
n∑

t=1

t.

Then
L̂n −min

i
Li,n =

(
L̂n − Ln

)
+
(
Ln −min

i
L̃i,n

)
+
(
min

i
L̃i,n −min

i
Li,n

)
. (1)

Lemma 1. For any sequence of losses i,t ≥ 0,

L̂n − Ln ≤
n∑

t=1

(
It,t − ̌t

)
+

n∑
t=1

Nγťt.

Proof. Since pIt,t/p̃It,t = 1/ct =
∑

j:pj,t≥γt
pj,t = 1−

∑
j:pj,t<γt

pj,t ≥ 1−Nγt

we have

t =
N∑

i=1

pi,t̃i,t = pIt,t̃It,t ≥ (1−Nγt)p̃It,t̃It,t = (1 −Nγt)̌t.

Thus
L̂n − Ln =

n∑
t=1

It,t −
n∑

t=1

t ≤
n∑

t=1

(
It,t − ̌t

)
+

n∑
t=1

Nγťt.

�

For bounding Ln −mini L̃i,n we use of the following lemma.

Lemma 2 (Cesa-Bianchi et al. [6]). Consider any nonincreasing sequence
of η1, η2, . . . positive learning rates and any sequences �̃1, �̃2, . . . ∈ RN

+ of loss
vectors. Define the function Φ by

Φ(pt, ηt,−�̃t) =
N∑

i=1

pi,t̃i,t +
1
ηt

ln
N∑

i=1

pi,te
−ηt�̃i,t ,

where pt = (p1,t, p2,t, . . . , pN,t) the probability vector of the WM algorithm. Then,
for Algorithm Green

Ln −min
i

L̃i,n ≤
(

2
ηn+1

− 1
η1

)
lnN +

n∑
t=1

Φ(pt, ηt,−�̃t).

2 For ε = 1 optimality follows from the lower bound on the regret in [1].

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 235

Lemma 3. With the notation of Lemma 2 we get for algorithm Green,

Φ(pt, ηt,−�̃t) ≤
ηt

2εt

N∑
i=1

i,t̃i,t.

Proof.

Φ(pt, ηt,−�̃t) =
N∑

i=1

pi,t̃i,t +
1
ηt

ln
N∑

i=1

pi,te
−ηt �̃i,t

≤
N∑

i=1

pi,t̃i,t +
1
ηt

ln
N∑

i=1

pi,t

(
1− ηt̃i,t +

η2
t ̃

2
i,t

2

)
(2)

≤
N∑

i=1

pi,t̃i,t +
1
ηt

ln

(
1− ηt

N∑
i=1

pi,t̃i,t +
η2

t

2

N∑
i=1

pi,t̃
2
i,t

)

≤ ηt

2

N∑
i=1

pi,t̃
2
i,t ≤

ηt

2εt

N∑
i=1

i,t̃i,t (3)

where (2) holds because of e−x ≤ 1 − x + x2/2 for x ≥ 0, and (3) follows from
the fact that ln(1 + x) ≤ x for all x > −1, and from the definition of ̃i,t in
algorithm Green. �

Lemma 4. For any sequence of i,t the loss of algorithm Green is bounded by

E
[
L̂n

]
−min

i
E [Li,n] ≤ N

n∑
t=1

γtE [It,t] +
2 lnN
ηn+1

+
N∑

i=1

n∑
t=1

ηtE
[
i,t̃i,t

]
2εt

(4)

= N

n∑
t=1

γtE [It,t] +
2 lnN
ηn+1

+
N∑

i=1

n∑
t=1

ηtE
[
2i,t
]

2εt
.

Proof. From (1) and Lemmas 1–3, we get

L̂n −min
i

Li,n ≤
n∑

t=1

(
It,t − ̌t

)
+

n∑
t=1

Nγťt +
(

2
ηn+1

− 1
η1

)
lnN

+
n∑

t=1

ηt

2εt

N∑
i=1

i,t̃i,t +
(
min

i
L̃i,n −min

i
Li,n

)
.

Since Et[It,t] =
∑N

i=1 p̃i,ti,t =
∑N

i=1 p̃i,tEt

[
̃i,t

]
= Et

[
̌t

]
and E

[
mini L̃i,n

]
≤

mini E
[
L̃i,n

]
= mini E [Li,n], taking expectations gives (4). The second line of

the lemma follows from Et

[
̃i,t

]
= i,t. �

236 C. Allenberg et al.

Proof of Theorem 1. By simple calculation from Lemma 4. �

Proof of Theorem 2. Let Ti = max{0 ≤ t ≤ n : pi,t ≥ γ} be the last round
which contributes to L̃i,n. Therefore,

γ ≤ pi,Ti =
e−ηL̃i,Ti∑N

j=1 e
−ηL̃j,Ti

<
e−ηL̃i,Ti

e−ηL̃i∗,n

,

where i∗ = arg mini Li,n. After rearranging we obtain

L̃i,Ti ≤ L̃i∗,n +
ln(1/γ)

η

and since L̃i,n = L̃i,Ti we get that L̃i,n ≤ L̃i∗,n + ln(1/γ)
η . Plugging this bound

into (4) and using i,t ∈ [0, 1] we get

E
[
L̂n

]
−min

i
E [Li,n] ≤ γNE

[
L̂n

]
+

2 lnN
η

+ N
η

2ε

(
E [Li∗,n] +

ln(1/γ)
η

)
.

Solving for E
[
L̂n

]
we find

E
[
L̂n

]
≤ 1

1− γN

[
min

i
E [Li,n] +

2 lnN
η

+ N
η

2ε

(
E [Li∗,n] +

ln(1/γ)
η

)]
.

For γ = 1
N(εB+2) we have mini E[Li,n]

1−γN ≤ mini E [Li,n] + 1
ε and 1

1−γN ≤ 2, which
implies

E
[
L̂n

]
≤ min

i
E [Li,n] +

1
ε

+
4 lnN
η

+ N
η

ε

(
E [Li∗,n] +

lnN
η

+
ln(εB + 2)

η

)
and, by simple calculation, the statement of the theorem. �

5 Hannan Consistency

In this section we derive the sufficient conditions of Hannan consistency under
partial monitoring for algorithm Green using time-varying parameters in case
when the bound of the loss is unknown in advance, or when the loss is unbounded.

The next result shows sufficient conditions of Hannan consistency of Algo-
rithm Green.

Theorem 3. Algorithm Green is run for the combination of the label efficient
and multi armed bandit problem. There exist constants c < ∞ and 0 ≤ ν < 1
such that for each n

max
1≤i≤N

1
n

n∑
t=1

2i,t < cnν .

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 237

For some constant ρ > 0 choose the parameters of the algorithm as:
γt = t−α/N ; (ν + ρ)/2 ≤ α ≤ 1,

ηt = t−1+δ; 0 < δ ≤ 1− ν − α− β − ρ

and
εt = ε0t

−β ; 0 < ε0 ≤ 1 and 0 ≤ β ≤ 1− ν − α− δ − ρ.

Then Algorithm Green is Hannan consistent, that is,

lim sup
n→∞

1
n

(
L̂n −min

i
Li,n

)
≤ 0 a.s.

Remark 3. (Unknown ν) If ν is unknown in advance, then define a set of infinite
number of experts. The experts use Algorithm 1 with different parameter ν.
Since 0 ≤ ν < 1, instead of ν we can use νk, a quantization of the [0, 1) interval.
Let {νk} is a monotonically increasing sequence which goes to 1 and let qk be an
arbitrary distribution over the set of k such that qk > 0 for all k. Then using ex-
ponential weighting with time-varying learning rate in case of unbounded losses,
the difference between the average loss of the (combined) algorithm and the av-
erage loss of the best expert vanishes asymptotically [10][Lemma 1]. Therefore
the algorithm reaches Hannan consistency.

Remark 4. We derive the consequences of the theorem in special cases:

– FI: With a slight modification of the proof and fixing β = 0 (εt = 1) and
γt = 0 we get the following condition for the losses in full information case:

max
1≤i≤N

1
n

n∑
t=1

2i,t ≤ O
(
n1−δ−ρ

)
.

– MAB: we fix β = 0 (εt = 1). Choose γt = t−1/3 for all t. Then the condition
is for the losses

max
1≤i≤N

1
n

n∑
t=1

2i,t ≤ O
(
n2/3−δ−ρ

)
.

– LE(εt): With a slight modification of the proof and fixing γt = 0 we get the
following condition for the loss function in label efficient case:

max
1≤i≤N

1
n

n∑
t=1

2i,t ≤ O
(
n1−β−δ−ρ

)
.

– LE(εt)+MAB: This is the most general case. Let γt = t−1/3. Then the
bound is

max
1≤i≤N

1
n

n∑
t=1

2i,t ≤ O
(
n2/3−β−δ−ρ

)
.

238 C. Allenberg et al.

Remark 5. (Convergence rate) With a slight extension of Lemma 5 we can re-
trieve the ν dependent almost sure convergence rate of the algorithm. The rate
is

1
n

(
L̂n −min

i
Li,n

)
≤ O(nν/2−1/2) a.s.

in the FI and the LE cases with optimal choice of the parameters and in the
MAB and the LE+MAB cases it is

1
n

(
L̂n −min

i
Li,n

)
≤ O(nν/2−1/3) a.s.

Remark 6. (Minimum amount of query rate in LE(εt)) Denote

μ(n) =
n∑

t=1

εt

the expected query rate, that is, the expected number of queries that can be
issued up to time n. Assume that the average of the loss function has a constant
bound, i.e., ν = 0. With a slight modification of the proof of Theorem 3 and
choosing

ηt =
log log log t

t
and εt =

log log t
t

we obtain the condition for Hannan consistency, such that

μ(n) = log n log logn,

which is the same as that of to Cesa-Bianchi et al. [5].

6 Proof

In order to prove Theorem 3, we split the proof into three lemmas by telescope
as before:

1
n
L̂n −

1
n

min
i

Li,n

=
1
n

(
L̂n − Ln

)
︸ ︷︷ ︸

Lemma 6

+
1
n

(
Ln −min

i
L̃i,n

)
︸ ︷︷ ︸

Lemma 7

+
1
n

(
min

i
L̃i,n −min

i
Li,n

)
︸ ︷︷ ︸

Lemma 8

. (5)

Combine sequentially Lemma 6, Lemma 7 and Lemma 8 to prove Theorem 3.
We will show separately the almost sure convergence of the three terms on the
right-hand side. In the sequel, we need the following lemma which is the key of
the proof of Theorem 3:

Lemma 5. Let {Zt} a martingale difference sequence. Let

htE [kt] ≥ Var(Zt)

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 239

where
ht = 1/ta

for all t = 1, 2, . . . and

Kn =
1
n

n∑
t=1

kt ≤ Cnb

and 0 ≤ b < 1 and b− a < 1. Then

lim
n→∞

1
n

n∑
t=1

Zt = 0 a.s.

Proof. By the strong law of large numbers for martingale differences due to
Chow [8], if {Zt} a martingale difference sequence with

∞∑
t=1

Var(Zt)
t2

<∞ (6)

then

lim
n→∞

1
n

n∑
t=1

Zt = 0 a.s.

We have to verify (6). Because of kt = tKt − (t − 1)Kt−1, and ht

t −
ht+1t
(t+1)2 ≥ 0

we have that
n∑

t=1

Var(Zt)
t2

≤
n∑

t=1

htE [kt]
t2

=
n∑

t=1

htE [(tKt − (t− 1)Kt−1)]
t2

=
hnE [Kn]

n
+

n−1∑
t=1

(
ht

t
− ht+1t

(t + 1)2

)
E [Kt]

≤ n−aCnb

n
+

n−1∑
t=1

(
t−a

t
− (t + 1)−at

(t + 1)2

)
Ctb

which is bounded by conditions. �

Now we are ready to prove one by one the almost sure convergence of the terms
in (5).

Lemma 6. Under the conditions of the Theorem 3,

lim
n→∞

1
n

(
L̂n − Ln

)
= 0 a.s.

Proof. First we use Lemma 1, that is

L̂n − Ln ≤
n∑

t=1

(
It,t − ̌t

)
+

n∑
t=1

Nγťt =
n∑

t=1

Zt +
n∑

t=1

Nγťt. (7)

240 C. Allenberg et al.

Below we show separately, that both sums in (7) divided by n converge to zero
almost surely. First observe that {Zt} is a martingale difference sequence with
respect to It−1

1 and St−1
1 . Observe that It is independent from St therefore we

get the following bound for the variance of Zt:

Var(Zt) = E
[
Z2

t

]
= E

[
(It,t − ̌t)2

]
≤ 1

εt
E

[
N∑

i=1

2i,t

]
def= htE [kt] ,

where ht = 1/εt and kt =
∑N

i=1
2
i,t. Then applying Lemma 5 we obtain

lim
n→∞

1
n

n∑
t=1

Zt = 0 a.s.

Next we show that the second sum in (7) divided by n goes to zero almost surely,
that is,

1
n

n∑
t=1

Nγťt =
1
n

n∑
t=1

St

εt
It,tNγt =

1
n

n∑
t=1

Rt +
1
n

n∑
t=1

It,tNγt → 0 (n→∞)

(8)
where Rt is a martingale difference sequence respect to St−1

1 and It
1. Bounding

the variance of Rt, we obtain

Var(Rt) ≤ N2 γ
2
t

εt
E

[
N∑

i=1

2i,t

]
.

Then using Lemma 5 with parameters ht = γ2
t /εt and kt =

∑N
i=1

2
i,t we get

lim
n→∞

1
n

n∑
t=1

Rt = 0 a.s.

The proof is finished by showing, that the second sum in (8) goes to zero. i.e.,

lim
n→∞

1
n

n∑
t=1

It,tNγt = lim
n→∞

N

N∑
i=1

1
n

n∑
t=1

i,tγt = 0.

Introduce Ki,n = 1
n

∑n
t=1 i,t then for all i

1
n

n∑
t=1

i,tγt =
1
n

n∑
t=1

(tKi,t − (t− 1)Ki,t−1)γt

= Ki,nγn +
1
n

n−1∑
t=1

(γt − γt+1) tKi,t

≤ Ki,nγn +
1
n

n−1∑
t=1

γtKi,t (9)

≤
√
c

1
N
nν/2−α +

1
nN

n−1∑
t=1

tν/2−α
√
c→ 0 (10)

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 241

where the (9) holds because (γt−γt+1)t ≤ γt and (10) follows from Ki,n ≤
√
cnν ,

the definition of the parameters and α ≥ (ν + ρ)/2. �

Lemma 7 yields the relation between Ln and mini L̃i,n.

Lemma 7. Under the conditions of Theorem 3,

lim sup
n→∞

1
n

(
Ln −min

i
L̃i,n

)
≤ 0 a.s.

Proof. We start by applying Lemma 2, that is,

Ln −min
i

L̃i,n ≤
2 lnN
ηn+1

+
n∑

t=1

Φ(pt, ηt,−�̃t). (11)

To bound the quantity of Φ(pt, ηt,−�̃t), our starting point is (3). Moreover,

ηt

2

N∑
i=1

pi,t̃
2
i,t =

ηt

2

N∑
i=1

pi,t

2i,t
p̃2

i,tε
2
t

StI{It=i} ≤
ηt

2γtεt

St

εt
2It,t ≤

ηt

2γtεt

St

εt

N∑
i=1

2i,t

(12)

where the first inequality comes from pIt,t ≥ γt. Combining this bound with
(11), dividing by n and taking the limit superior we get

lim sup
n→∞

1
n

(
Ln −min

i
L̃i,n

)
≤ lim sup

n→∞

2 lnN
nηn+1

+ lim sup
n→∞

1
n

n∑
t=1

ηt

2γtεt

St

εt

N∑
i=1

2i,t.

Let analyze separately the two terms on the right-hand side. The first term is
zero because of the assumption of the Theorem 3. Concerning the second term,
similarly to Lemma 6 we can split St/εt as follows: let us

St

εt

ηt

2γtεt

N∑
i=1

2i,t = Zt +
ηt

2γtεt

N∑
i=1

2i,t, (13)

where Zt is a martingale difference sequence. The variance is

Var(Zt) = E

[
η2

t St

γ2
t ε

2
t

(∑N
i=1

2
i,t

)2
]

=
η2

t

εtγ2
t

E

[(∑N
i=1

2
i,t

)2
]
.

Application of Lemma 5 with ht = η2
t

εtγ2
t

and kt =
(∑N

i=1
2
i,t

)2
yields

lim
n→∞

1
n

n∑
t=1

Zt = 0 a.s.

where we used that

1
n

n∑
t=1

kt ≤
1
n

(
n∑

t=1

√
kt

)2

≤ N2c2n1+2ν .

242 C. Allenberg et al.

Finally, we have to prove that the sum of the second term in (13) goes to zero,
that is,

lim sup
n→∞

1
n

n∑
t=1

N∑
i=1

ηt

2γtεt
2i,t = 0

for which we use same argument as in Lemma 6. Introduce Ki,n = 1
n

∑n
t=1

2
i,t

then we get

1
n

n∑
t=1

2i,t
ηt

2γtεt
= Ki,n

ηn

2γnεn
+

1
n

n−1∑
t=1

(
ηt

2γtεt
− ηt+1

2γt+1εt+1

)
tKi,t

≤ Ki,n
ηn

2γnεn
+

1
n

n−1∑
t=1

ηt

2γtεt
Ki,t

≤ Ncnν−1+α+β+δ +
1
n

n−1∑
t=1

Nctν−1+α+β+δ → 0

because of Ki,n ≤ cnν and ν < 1− α− β − δ − ρ. �

Finally, the last step is to analyze the difference between the estimated loss and
the true loss.

Lemma 8. Under the conditions of Theorem 3,

lim
n→∞

1
n

(
min

i
L̃i,n −min

j
Lj,n

)
= 0 a.s.

Proof. First, bound the difference of the minimum of the true and the estimated
loss. Obviously,

1
n

(
min

i
L̃i,n −min

j
Lj,n

)
≤

N∑
i=1

∣∣∣∣∣ 1n (L̃i,n − Li,n

) ∣∣∣∣∣ =
N∑

i=1

∣∣∣∣∣ 1n
n∑

t=1

(̃i,t − i,t)

∣∣∣∣∣
=

N∑
i=1

∣∣∣∣∣ 1n
n∑

t=1

Zi,t

∣∣∣∣∣,
where Zi,t is martingale difference sequence for all i. As earlier, we use Lemma 5.
First we bound Var(Zi,t) as follows

Var(Zi,t) = Ẽ2i,t ≤
E
[∑N

i=1
2
i,t

]
εtγt

. (14)

Applying Lemma 5 with parameters kt =
∑N

i=1
2
i,t and ht = 1

εtγt
, for each i

lim
n→∞

1
n

n∑
t=1

Zi,t = 0 a.s.

Hannan Consistency in On-Line Learning in Case of Unbounded Losses 243

therefore

lim
n→∞

N∑
i=1

∣∣∣∣∣ 1n
n∑

t=1

Zi,t

∣∣∣∣∣ = 0 a.s.

�

References

1. P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged
casino: the adversial multi-armed bandit problem. In Proceedings of the 36th An-
nual Symposium on Foundations of Computer Science, FOCS 1995, pages 322–331,
Washington, DC, USA, Oct. 1995. IEEE Computer Society Press, Los Alamitos,
CA.

2. D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6:1–8, 1956.

3. N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. Schapire, and M. K.
Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

4. N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, Cambridge, 2006.

5. N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient
prediction. IEEE Trans. Inform. Theory, IT-51:2152–2162, June 2005.

6. N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for
prediction with expert advice. In COLT 2005, pages 217–232, 2005.

7. N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for
prediction with expert advice, 2006. (submitted).

8. Y. S. Chow. Local convergence of martingales and the law of large numbers. Annals
of Mathematical Statistics, 36:552–558, 1965.

9. L. Györfi and G. Lugosi. Strategies for sequential prediction of stationary time se-
ries. In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modelling Uncertainty:
An Examination of its Theory, Methods and Applications, pages 225–248. Kluwer
Academic Publishers, 2001.

10. L. Györfi and Gy. Ottucsák. Sequential prediction of unbounded stationary time
series, 2006. (submitted).

11. A. György and Gy. Ottucsák. Adaptive routing using expert advice. The Computer
Journal, 49(2):180–189, 2006.

12. J. Hannan. Approximation to bayes risk in repeated plays. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139. Princeton University Press, 1957.

13. S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometria, 68(5):181–200, 2002.

14. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994.

15. J. Poland and M. Hutter. Defensive universal learning with experts. In Proc. 16th
International Conf. on Algorithmic Learning Theory, ALT 2005, pages 356–370,
Singapore, 2005. Springer, Berlin.

16. V. Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop
on Computational Learning Theory, pages 372–383, Rochester, NY, Aug. 1990.
Morgan Kaufmann.

General Discounting Versus Average Reward

Marcus Hutter

IDSIA / RSISE / ANU / NICTA /
http://www.hutter1.net

Abstract. Consider an agent interacting with an environment in cy-
cles. In every interaction cycle the agent is rewarded for its performance.
We compare the average reward U from cycle 1 to m (average value)
with the future discounted reward V from cycle k to ∞ (discounted
value). We consider essentially arbitrary (non-geometric) discount se-
quences and arbitrary reward sequences (non-MDP environments). We
show that asymptotically U for m→∞ and V for k→∞ are equal, pro-
vided both limits exist. Further, if the effective horizon grows linearly
with k or faster, then the existence of the limit of U implies that the
limit of V exists. Conversely, if the effective horizon grows linearly with
k or slower, then existence of the limit of V implies that the limit of U
exists.

1 Introduction

We consider the reinforcement learning setup [RN03, Hut05], where an agent
interacts with an environment in cycles. In cycle k, the agent outputs (acts)
ak, then it makes observation ok and receives reward rk, both provided by the
environment. Then the next cycle k+1 starts. For simplicity we assume that
agent and environment are deterministic.

Typically one is interested in action sequences, called plans or policies, for
agents that result in high reward. The simplest reasonable measure of perfor-
mance is the total reward sum or equivalently the average reward, called average
value U1m := 1

m [r1+...+rm], where m should be the lifespan of the agent. One
problem is that the lifetime is often not known in advance, e.g. often the time
one is willing to let a system run depends on its displayed performance. More se-
rious is that the measure is indifferent to whether an agent receives high rewards
early or late if the values are the same.

A natural (non-arbitrary) choice for m is to consider the limit m→∞. While
the indifference may be acceptable for finite m, it can be catastrophic for m=∞.
Consider an agent that receives no reward until its first action is ak =b, and then
once receives reward k−1

k . For finite m, the optimal k to switch from action a to
b is kopt =m. Hence kopt→∞ for m→∞, so the reward maximizing agent for
m→∞ actually always acts with a, and hence has zero reward, although a value
arbitrarily close to 1 would be achievable. (Immortal agents are lazy [Hut05,
Sec.5.7]). More seriously, in general the limit U1∞ may not even exist.

Another approach is to consider a moving horizon. In cycle k, the agent tries to
maximize Ukm := 1

m−k+1 [rk+...+rm], where m increases with k, e.g. m=k+h−1

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 244–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

General Discounting Versus Average Reward 245

with h being the horizon. This naive truncation is often used in games like chess
(plus a heuristic reward in cycle m) to get a reasonably small search tree. While
this can work in practice, it can lead to inconsistent optimal strategies, i.e. to
agents that change their mind. Consider the example above with h=2. In every
cycle k it is better first to act a and then b (Ukm = rk +rk+1 =0+ k

k+1), rather
than immediately b (Ukm =rk+rk+1= k−1

k +0), or a,a (Ukm =0+0). But entering
the next cycle k+1, the agent throws its original plan overboard, to now choose
a in favor of b, followed by b. This pattern repeats, resulting in no reward at all.

The standard solution to the above problems is to consider geometri-
cally=exponentially discounted reward [Sam37, BT96, SB98]. One discounts the
reward for every cycle of delay by a factor γ < 1, i.e. one considers the future
discounted reward sum Vkγ :=(1−γ)

∑∞
i=kγ

i−kri, which models a preference to-
wards early rewards. The V1γ maximizing policy is consistent in the sense that its
actions ak,ak+1,... coincide with the optimal policy based on Vkγ . At first glance,
there seems to be no arbitrary lifetime m or horizon h, but this is an illusion.
Vkγ is dominated by contributions from rewards rk...rk+O(lnγ−1), so has an effec-
tive horizon heff ≈ lnγ−1. While such a sliding effective horizon does not cause
inconsistent policies, it can nevertheless lead to suboptimal behavior. For every
(effective) horizon, there is a task that needs a larger horizon to be solved. For
instance, while heff =5 is sufficient for tic-tac-toe, it is definitely insufficient for
chess. There are elegant closed form solutions for Bandit problems, which show
that for any γ < 1, the Bayes-optimal policy can get stuck with a suboptimal
arm (is not self-optimizing) [BF85, KV86].

For γ→ 1, heff →∞, and the defect decreases. There are various deep pa-
pers considering the limit γ→ 1 [Kel81], and comparing it to the limit m→∞
[Kak01]. The analysis is typically restricted to ergodic MDPs for which the limits
limγ→1V1γ and limm→∞U1m exist. But like the limit policy for m→∞, the limit
policy for γ→1 can display very poor performance, i.e. we need to choose γ<1
fixed in advance (but how?), or consider higher order terms [Mah96, AA99]. We
also cannot consistently adapt γ with k. Finally, the value limits may not exist
beyond ergodic MDPs.

In the computer science literature, geometric discount is essentially assumed
for convenience without outer justification (sometimes a constant interest rate or
probability of surviving is quoted [KLM96]). In the psychology and economics
literature it has been argued that people discount a one day=cycle delay in
reward more if it concerns rewards now rather than later, e.g. in a year (plus
one day) [FLO02]. So there is some work on “sliding” discount sequences Wkγ∝
γ0rk+γ1rk+1+.... One can show that this also leads to inconsistent policies if γ
is non-geometric [Str56, VW04].

Is there any non-geometric discount leading to consistent policies? In [Hut02]
the generally discounted value Vkγ := 1

Γk

∑∞
i=kγiri with Γk :=

∑∞
i=kγi <∞ has

been introduced. It is well-defined for arbitrary environments, leads to consistent
policies, and e.g. for quadratic discount γk =1/k2 to an increasing effective hori-
zon (proportionally to k), i.e. the optimal agent becomes increasingly farsighted
in a consistent way, leads to self-optimizing policies in ergodic (kth-order) MDPs

246 M. Hutter

in general, Bandits in particular, and even beyond MDPs. See [Hut02] for these
and [Hut05] for more results. The only other serious analysis of general discounts
we are aware of is in [BF85], but their analysis is limited to Bandits and so-called
regular discount. This discount has bounded effective horizon, so also does not
lead to self-optimizing policies.

The asymptotic total average performance U1∞ and future discounted perfor-
mance V∞γ are of key interest. For instance, often we do not know the exact
environment in advance but have to learn it from past experience, which is the
domain of reinforcement learning [SB98] and adaptive control theory [KV86].
Ideally we would like a learning agent that performs asymptotically as well as
the optimal agent that knows the environment in advance.

Contents and main results. The subject of study of this paper is the relation
between U1∞ and V∞γ for general discount γ and arbitrary environment. The
importance of the performance measures U and V , and general discount γ has
been discussed above. There is also a clear need to study general environments
beyond ergodic MDPs, since the real world is neither ergodic (e.g. losing an arm
is irreversible) nor completely observable.

The only restriction we impose on the discount sequence γ is summability
(Γ1 <∞) so that Vkγ exists, and monotonicity (γk≥ γk+1). Our main result is
that if both limits U1∞ and V∞γ exist, then they are necessarily equal (Section
7, Theorem 19). Somewhat surprisingly this holds for any discount sequence γ
and any environment (reward sequence r), whatsoever.

Note that limit U1∞ may exist or not, independent of whether V∞γ exists or
not. We present examples of the four possibilities in Section 2. Under certain
conditions on γ, existence of U1∞ implies existence of V∞γ , or vice versa. We
show that if (a quantity closely related to) the effective horizon grows linearly
with k or faster, then existence of U1∞ implies existence of V∞γ and their equality
(Section 5, Theorem 15). Conversely, if the effective horizon grows linearly with
k or slower, then existence of V∞γ implies existence of U1∞ and their equality
(Section 6, Theorem 17). Note that apart from discounts with oscillating effective
horizons, this implies (and this is actually the path used to prove) the first
mentioned main result. In Sections 3 and 4 we define and provide some basic
properties of average and discounted value, respectively.

2 Example Discount and Reward Sequences

In order to get a better feeling for general discount sequences, effective horizons,
average and discounted value, and their relation and existence, we first consider
various examples.

Notation
– In the following we assume that i,k,m,n∈IN are natural numbers.
– Let F :=limnFn =limk→∞infn>kFn denote the limit inferior and
– F :=limnFn =limk→∞supn>kFn the limit superior of Fn.
– ∀′n means for all but finitely many n.

General Discounting Versus Average Reward 247

– Let γ =(γ1,γ2,...) denote a summable discount sequence in the sense that
– Γk :=

∑∞
i=kγi<∞ and γk∈IR+ ∀k.

– Further, r=(r1,r2,...) is a bounded reward sequence w.l.g. rk∈ [0,1] ∀k.
– Let constants α,β∈ [0,1], boundaries 0≤k1<m1<k2<m2<k3<...,
– total average value U1m := 1

m

∑m
i=1ri (see Definition 10) and

– future discounted value Vkγ := 1
Γk

∑∞
i=kγiri (see Definition 12).

The derived theorems also apply to general bounded rewards ri∈[a,b] by linearly
rescaling ri �

ri−a
b−a ∈ [0,1] and U� U−a

b−a and V � V −a
b−a .

Discount sequences and effective horizons. Rewards rk+h give only a small
contribution to Vkγ for large h, since γk+h

h→∞−→ 0. More important, the whole re-
ward tail from k+h to∞ in Vkγ is bounded by 1

Γk
[γk+h+γk+h+1+...], which tends

to zero for h→∞. So effectively Vkγ has a horizon h for which the cumulative tail
weight Γk+h/Γk is, say, about 1

2 , or more formally heff
k :=min{h≥0:Γk+h≤ 1

2Γk}.
The closely related quantity hquasi

k :=Γk/γk, which we call the quasi-horizon, will
play an important role in this work. The following table summarizes various dis-
counts with their properties.

Discounts γk Γk heff
k hquasi

k kγk/Γk →?
finite (k ≤ m) 1 m− k + 1 1

2 (m− k + 1) m− k + 1 k
m−k+1

geometric γk, 0 ≤ γ < 1 γk

1−γ
ln 2

ln γ−1
1

1−γ (1 − γ)k→∞
quadratic 1

k(k+1)
1
k k k + 1 k

k+1 → 1
power k−1−ε, ε > 0 ∼ 1

εk
−ε ∼ (21/ε − 1)k ∼ k

ε ∼ ε → ε
harmonic≈ 1

k ln2 k
∼ 1

lnk ∼ k2 ∼ k ln k ∼ 1
ln k → 0

For instance, the standard discount is geometric γk =γk for some 0≤γ<1, with
constant effective horizon ln(1/2)

lnγ . (An agent with γ=0.95 can/will not plan far-
ther than about 10-20 cycles ahead). Since in this work we allow for general dis-
count, we can even recover the average value U1m by choosing γk ={ 1 for k≤m

0 for k>m}. A
power discount γk =k−α (α>1) is very interesting, since it leads to a linearly in-
creasing effective horizon heff

k ∝k, i.e. to an agent whose farsightedness increases
proportionally with age. This choice has some appeal, as it avoids preselection
of a global time-scale like m or 1

1−γ , and it seems that humans of age k years
usually do not plan their lives for more than, perhaps, the next k years. It is
also the boundary case for which U1∞ exists if and only if V∞γ exists.

Example reward sequences. Most of our (counter)examples will be for binary
reward r∈{0,1}∞. We call a maximal consecutive subsequence of ones a 1-run.
We denote start, end, and length of the nth run by kn, mn−1, and An=mn−kn,
respectively. The following 0-run starts at mn, ends at kn+1−1, and has length
Bn = kn+1−mn. The (non-normalized) discount sum in 1/0-run n is denoted
by an / bn, respectively. The following definition and two lemmas facilitate the
discussion of our examples. The proofs contain further useful relations.

Definition 1 (Value for binary rewards). Every binary reward sequence r∈
{0,1}∞ can be defined by the sequence of change points 0≤k1<m1<k2<m2<...
with rk =1 iff there is an n for which kn≤k<mn}.

248 M. Hutter

The intuition behind the following lemma is that the relative length An of a 1-
run and the following 0-run Bn (previous 0-run Bn−1) asymptotically provides
a lower (upper) limit of the average value U1m.

Lemma 2 (Average value for binary rewards). For binary r of Definition
1, let An :=mn−kn and Bn :=kn+1−mn be the lengths of the nth 1/0-run. Then

If An

An+Bn
→ α then U1∞ = limn U1,kn−1 = α

If An

Bn−1+An
→ β then U1∞ = limn U1,mn−1 = β

In particular, if α=β, then U1∞=α=β exists.

Proof. The elementary identity U1m = U1,m−1+ 1
m (rm−U1,m−1) ≷ U1,m−1 if

rm ={ 1
0} implies

U1kn ≤ U1m ≤ U1,mn−1 for kn ≤ m < mn

U1,kn+1−1 ≤ U1m ≤ U1,mn for mn ≤ m < kn+1

⇒ inf
n≥n0

U1kn ≤ U1m ≤ sup
m≥n0

U1,mn−1 ∀m ≥ kn0

⇒ lim
n

U1kn = U1∞ ≤ U1∞ = lim
n

U1,mn−1 (1)

The≥ direction in the equalities in the last line holds, since (U1kn) and (U1,mn−1)
are subsequences of (U1m). Now

If An

An+Bn
≥ α ∀n then U1,kn−1 = A1 + ... + An−1

A1+B1+...+An−1+Bn−1
≥ α ∀n (2)

This implies infn
An

An+Bn
≤ infnU1,kn−1. If the condition in (2) is initially (for a

finite number of n) violated, the conclusion in (2) still holds asymptotically. A
standard argument along these lines shows that we can replace the inf by a lim,
i.e.

lim
n

An

An+Bn
≤ lim

n
U1,kn−1 and similarly lim

n

An

An+Bn
≥ lim

n
U1,kn−1

Together this shows that limnU1,kn−1 =α exists, if limn
An

An+Bn
=α exists. Simi-

larly

If An

Bn−1+An
≥ β ∀n then U1,mn−1 = A1 + ... + An

B0+A1+...+Bn−1+An
≥ β ∀n (3)

where B0 :=0. This implies infn
An

Bn−1+An
≤ infnU1,mn−1, and by an asymptotic

refinement of (3)

lim
n

An

Bn−1+An
≤ lim

n
U1,mn−1 and similarly lim

n

An

Bn−1+An
≥ lim

n
U1,mn−1

Together this shows that limnU1,mn−1 =β exists, if limn
An

Bn−1+An
=β exists.

Similarly to Lemma 2, the asymptotic ratio of the discounted value an of a 1-run
and the discount sum bn of the following (bn−1 of the previous) 0-run determines
the upper (lower) limits of the discounted value Vkγ .

General Discounting Versus Average Reward 249

Lemma 3 (Discounted value for binary rewards). For binary r of Defi-
nition 1, let an :=

∑mn−1
i=kn

γi =Γkn−Γmn and bn :=
∑kn+1−1

i=mn
γi =Γmn−Γkn+1 be

the discount sums of the nth 1/0-run. Then

If an+1
bn+an+1

→ α then V ∞γ = limn Vmnγ = α

If an

an+bn
→ β then V ∞γ = limn Vknγ = β

In particular, if α=β, then V∞γ =α=β exists.

Proof. The proof is very similar to the proof of Lemma 2. The elementary
identity Vkγ =Vk+1,γ + γk

Γk
(rk−Vk+1,γ)≷Vk+1,γ if rk ={ 1

0} implies

Vmnγ ≤ Vkγ ≤ Vknγ for kn ≤ k ≤ mn

Vmnγ ≤ Vkγ ≤ Vkn+1γ for mn ≤ k ≤ kn+1

⇒ inf
n≥n0

Vmnγ ≤ Vkγ ≤ sup
m≥n0

Vknγ ∀k ≥ kn0

⇒ lim
n

Vmnγ = V ∞γ ≤ V ∞γ = lim
n

Vknγ (4)

The ≥ in the equalities in the last line holds, since (Vknγ) and (Vmnγ) are subse-
quences of (Vkγ). Now if an

an+bn
≥β ∀n≥n0 then Vknγ = an + an+1 + ...

an+bn+an+1+bn+1+...≥β
∀n≥n0. This implies

lim
n

an

an+bn
≤ lim

n
Vknγ and similarly lim

n

an

an+bn
≥ lim

n
Vknγ

Together this shows that limnVknγ =β exists, if limn
an

an+bn
=β exists. Similarly if

an+1
bn+an+1

≥α ∀n≥n0 then Vmnγ = an+1 + an+2 +...
bn+an+1+bn+1+an+2+...≥α ∀n≥n0. This implies

lim
n

an+1
bn+an+1

≤ lim
n

Vmnγ and similarly lim
n

an+1
bn+an+1

≥ lim
n

Vmnγ

Together this shows that limnVmnγ =α exists, if limn
an+1

bn+an+1
=α exists.

Example 4 (U1∞ = V∞γ). Constant rewards rk ≡α is a trivial example for
which U1∞=V∞γ =α exist and are equal.

A more interesting example is r =11021304... of linearly increasing 0/1-run-
length with An = 2n−1 and Bn = 2n, for which U1∞ = 1

2 exists. For quadratic
discount γk = 1

k(k+1) , using Γk = 1
k , hquasi

k = k+1 =Θ(k), kn = (2n−1)(n−1)+
1, mn = (2n−1)n+1, an = Γkn−Γmn = An

knmn
∼ 1

2n3 , and bn = Γmn−Γkn+1 =
Bn

mnkn+1
∼ 1

2n3 , we also get V∞γ = 1
2 . The values converge, since they average over

increasingly many 1/0-runs, each of decreasing weight.

Example 5 (simple U1∞ �⇒V∞γ). Let us consider a very simple example with
alternating rewards r=101010... and geometric discount γk =γk. It is immediate
that U1∞= 1

2 exists, but V ∞γ =V2k,γ = γ
1+γ <

1
1+γ =V2k−1,γ =V ∞γ .

Example 6 (U1∞ �⇒V∞γ). Let us reconsider the more interesting example r=
11021304... of linearly increasing 0/1-run-length with An =2n−1 and Bn =2n for
whichU1∞= 1

2 exists, as expected. On the other hand, for geometric discount γk =

250 M. Hutter

γk, using Γk = γk

1−γ and an = Γkn−Γmn = γkn

1−γ [1−γAn] and bn = Γmn−Γkn+1 =
γmn

1−γ [1−γBn], i.e. bn

an
∼ γAn → 0 and an+1

bn
∼ γBn → 0, we get V∞γ = α = 0< 1 =

β=V∞γ . Again, this is plausible since for k at the beginning of a long run, Vkγ is
dominated by the reward 0/1 in this run, due to the bounded effective horizon of
geometric γ.

Example 7 (V∞γ �⇒ U1∞). Discounted may not imply average value on
sequences of exponentially increasing run-length like r = 11021408116... with
An=22n−2=kn and Bn=22n−1=mn for which U1∞= An

An+Bn
= 1

3<
2
3 = An

Bn−1+An
=

U1∞, i.e. U1∞ does not exist. On the other hand, V∞γ exists for a discount with
super-linear horizon like γk =[kln2k]−1, since an increasing number of runs con-
tribute to Vkγ : Γk∼ 1

lnk , hence Γkn∼ 1
(2n−2)ln2 and Γmn∼ 1

(2n−1)ln2 , which implies
an =Γkn−Γmn∼ [4n2ln2]−1∼Γmn−Γkn+1 =bn, i.e. V∞γ = 1

2 exists.

Example 8 (Non-monotone discount γ, U1∞ �=V∞γ). Monotonicity of γ
in Theorems 15, 17, and 19 is necessary. As a simple counter-example consider
alternating rewards r2k = 0 with arbitrary γ2k and r2k−1 = 1 with γ2k−1 = 0,
which implies Vkγ≡0, but U1∞= 1

2 .
The above counter-example is rather simplistic. One may hope equivalence

to hold on smoother γ like γk+1
γk

→ 1. The following example shows that
this condition alone is not sufficient. For a counter-example one needs an
oscillating γ of constant relative amplitude, but increasing wavelength, e.g.
γk = [2+cos(π

√
2k)]/k2. For the sequence r =11021304... of Example 6 we had

U1∞ = 1
2 . Using mn = 1

2 (2n− 1
2)2+ 7

8 and kn+1 = 1
2 (2n+ 1

2)2+ 7
8 , and replacing

the sums in the definitions of an and bn by integrals, we get an∼ 1
n3 [12−

1
π] and

bn∼ 1
n3 [12 + 1

π], which implies that V∞γ = 1
2−

1
π exists, but differs from U1∞= 1

2 .

Example 9 (Oscillating horizon). It is easy to construct a discount γ for
which supk

Γk

kγk
=∞ and supk

kγk

Γk
=∞ by alternatingly patching together dis-

counts with super- and sub-linear quasi-horizon hquasi
k . For instance choose

γk ∝ γk geometric until Γk

kγk
< 1

n , then γk ∝ 1
kln2k

harmonic until Γk

kγk
>n, then

repeat with n� n+1. The proportionality constants can be chosen to insure
monotonicity of γ. For such γ neither Theorem 15 nor Theorem 17 is applica-
ble, only Theorem 19.

3 Average Value

We now take a closer look at the (total) average value U1m and relate it to the
future average value Ukm, an intermediate quantity we need later. We recall the
definition of the average value:

Definition 10 (Average value, U1m). Let ri ∈ [0,1] be the reward at time
i∈IN . Then U1m := 1

m

∑m
i=1ri∈ [0,1] is the average value from time 1 to m, and

U1∞ :=limm→∞U1m the average value if it exists.

General Discounting Versus Average Reward 251

We also need the average value Ukm := 1
m−k+1

∑m
i=kri from k to m and the

following Lemma.

Lemma 11 (Convergence of future average value, Uk∞). For km≤m→∞
and every k we have

U1m → α ⇔ Ukm → α
⇒ Ukmm → α if sup

m

km−1
m < 1

⇐ Ukmm → α

The first equivalence states the obvious fact (and problem) that any finite initial
part has no influence on the average value U1∞. Chunking together many Ukmm

implies the last ⇐. The ⇒ only works if we average in Ukmm over sufficiently
many rewards, which the stated condition ensures (r=101010... and km =m is a
simple counter-example). Note that Ukmk

→α for mk≥k→∞ implies U1mk
→α,

but not necessarily U1m→α (e.g. in Example 7, U1mk
= 1

3 and k−1
mk

→ 0 imply
Ukmk

→ 1
3 by (5), but U1∞ does not exist).

Proof. The trivial identity mU1m=(k−1)U1,k−1+(m−k+1)Ukm implies Ukm−
U1m = k−1

m−k+1 (U1m−U1,k−1) implies

|Ukm − U1m| ≤
|U1m − U1,k−1|

m
k−1 − 1

(5)

⇔) The numerator is bounded by 1, and for fixed k and m→∞ the denomi-
nator tends to ∞, which proves ⇔.
⇒) We choose (small) ε>0, mε large enough so that |U1m−α|<ε ∀m≥mε, and

m≥mε

ε . If k :=km≤mε, then (5) is bounded by 1
1/ε−1 . If k :=km>mε, then (5) is

bounded by 2ε
1/c−1 , where c:=supk

km−1
m <1. This shows that |Ukmm−U1m|=O(ε)

for large m, which implies Ukmm→α.
⇐) We partition the time-range {1...m} =

⋃L
n=1{kmn ...mn}, where m1 :=

m and mn+1 := kmn−1. We choose (small) ε > 0, mε large enough so that
|Ukmm−α|<ε ∀m≥mε, m≥ mε

ε , and l so that kml
≤mε≤ml. Then

U1m =
1
m

[
l∑

n=1

+
L∑

n=l+1

]
(mn−kmn +1)Ukmnmn

≤ 1
m

l∑
n=1

(mn−kmn +1)(α + ε) +
ml+1−kmL +1

m

≤ m1−kml
+1

m
(α + ε) +

kml

m
≤ (α + ε) + ε

Similarly U1m ≥ m1−kml
+1

m
(α− ε) ≥ m−mε

m
(α− ε) ≥ (1− ε)(α− ε)

This shows that |U1m−α|≤2ε for sufficiently largem, hence U1m→α.

4 Discounted Value

We now take a closer look at the (future) discounted value Vkγ for general dis-
counts γ, and prove some useful elementary asymptotic properties of discount
γk and normalizer Γk. We recall the definition of the discounted value:

252 M. Hutter

Definition 12 (Discounted value, Vkγ). Let ri∈[0,1] be the reward and γi≥0
a discount at time i∈IN , where γ is assumed to be summable in the sense that
0<Γk :=

∑∞
i=kγi<∞. Then Vkγ := 1

Γk

∑∞
i=kγiri∈ [0,1] is the γ-discounted future

value and V∞γ :=limk→∞Vkγ its limit if it exists.

We say that γ is monotone if γk+1≤ γk∀k. Note that monotonicity and Γk > 0
∀k implies γk>0 ∀k and convexity of Γk.

Lemma 13 (Discount properties, γ/Γ).

i)
γk+1

γk
→ 1 ⇔ γk+Δ

γk
→ 1 ∀Δ ∈ IN

ii)
γk

Γk
→ 0 ⇔ Γk+1

Γk
→ 1 ⇔ Γk+Δ

Γk
→ 1 ∀Δ ∈ IN

Furthermore, (i) implies (ii), but not necessarily the other way around (even not
if γ is monotone).

Proof. (i)⇒ γk+Δ

γk
=
∏Δ−1

i=k
γi+1
γi

k→∞−→ 1, since Δ is finite.
(i)⇐ Set Δ=1.
(ii) The first equivalence follows from Γk =γk+Γk+1. The proof for the second
equivalence is the same as for (i) with γ replaced by Γ .
(i)⇒(ii) Choose ε>0. (i) implies γk+1

γk
≥1−ε ∀ ′k implies

Γk =
∞∑

i=k

γi = γk

∞∑
i=k

i−1∏
j=k

γi+1

γi
≥ γk

∞∑
i=k

(1 − ε)i−k = γk/ε

hence γk

Γk
≤ε ∀′k, which implies γk

Γk
→0.

(i) �⇐(ii) Consider counter-example γk = 4−�log2k�, i.e. γk =4−n for 2n−1<k≤2n.
Since Γk≥

∑∞
i=2nγi=2−n−1 we have 0≤ γk

Γk
≤21−n→0, but γk+1

γk
= 1

4 �→1 for k=2n.

5 Average Implies Discounted Value

We now show that existence of limmU1m can imply existence of limkVkγ and
their equality. The necessary and sufficient condition for this implication to hold
is roughly that the effective horizon grows linearly with k or faster. The auxiliary
quantity Ukm is in a sense closer to Vkγ than U1m is, since the former two both
average from k (approximately) to some (effective) horizon. If γ is sufficiently
smooth, we can chop the area under the graph of Vkγ (as a function of k)
“vertically” approximately into a sum of average values, which implies

Proposition 14 (Future average implies discounted value, U∞ ⇒V∞γ).
Assume k≤mk→∞ and monotone γ with γmk

γk
→1. If Ukmk

→α, then Vkγ→α.

The proof idea is as follows: Let k1 =k and kn+1 =mkn +1. Then for large k we
get

General Discounting Versus Average Reward 253

Vkγ =
1
Γk

∞∑
n=1

mkn∑
i=kn

γiri ≈ 1
Γk

∞∑
n=1

γkn(kn+1 − kn)Uknmkn

≈ α

Γk

∞∑
n=1

γkn(kn+1 − kn) ≈ α

Γk

∞∑
n=1

mkn∑
i=kn

γi = α

The (omitted) formal proof specifies the approximation error, which vanishes
for k→∞.

Actually we are more interested in relating the (total) average value U1∞
to the (future) discounted value Vkγ . The following (first main) Theorem shows
that for linearly or faster increasing quasi-horizon, we have V∞γ =U1∞, provided
the latter exists.

Theorem 15 (Average implies discounted value, U1∞ ⇒V∞γ).
Assume supk

kγk

Γk
<∞ and monotone γ. If U1m→α, then Vkγ→α.

For instance, quadratic, power and harmonic discounts satisfy the condition, but
faster-than-power discount like geometric do not. Note that Theorem 15 does
not imply Proposition 14.

The intuition of Theorem 15 for binary reward is as follows: For U1m being
able to converge, the length of a run must be small compared to the total length
m up to this run, i.e. o(m). The condition in Theorem 15 ensures that the
quasi-horizon hquasi

k = Ω(k) increases faster than the run-lengths o(k), hence
Vkγ≈UkΩ(k)≈U1m (Lemma 11) asymptotically averages over many runs, hence
should also exist. The formal proof “horizontally” slices Vkγ into a weighted sum
of average rewards U1m. Then U1m→α implies Vkγ→α.

Proof. We represent Vkγ as a δj-weighted mixture of U1j ’s for j ≥ k, where
δj := γj−γj+1 ≥ 0. The condition ∞> c≥ kγk

Γk
=: ck ensures that the excessive

initial part ∝U1,k−1 is “negligible”. It is easy to show that
∞∑

j=i

δj = γi and
∞∑

j=k

jδj = (k−1)γk + Γk

We choose some (small) ε>0, and mε large enough so that |U1m−α|<ε ∀m≥mε.
Then, for k>mε we get

Vkγ =
1
Γk

∞∑
i=k

γiri =
1
Γk

∞∑
i=k

∞∑
j=i

δjri =
1
Γk

∞∑
j=k

j∑
i=k

δjri

=
1
Γk

∞∑
j=k

δj [jU1j − (k−1)U1,k−1]

≶ 1
Γk

∞∑
j=k

δj [j(α ± ε) − (k−1)(α ∓ ε)]

=
1
Γk

[(k−1)γk + Γk](α ± ε) − 1
Γk

γk(k−1)(α ∓ ε)

= α ±
(
1 +

2(k − 1)γk

Γk

)
ε ≶ α ± (1 + 2ck)ε

i.e. |Vkγ−α|<(1+2ck)ε≤(1+2c)ε ∀k>mε, which implies Vkγ→α.

254 M. Hutter

Theorem 15 can, for instance, be applied to Example 4. Examples 5, 6, and 8
demonstrate that the conditions in Theorem 15 cannot be dropped. The fol-
lowing proposition shows more strongly, that the sufficient condition is actually
necessary (modulo monotonicity of γ), i.e. cannot be weakened.

Proposition 16 (U1∞ �⇒ V∞γ). For every monotone γ with supk
kγk

Γk
=∞,

there are r for which U1∞ exists, but not V∞γ .

The proof idea is to construct a binary r such that all change points kn and mn

satisfy Γkn ≈ 2Γmn . This ensures that Vknγ receives a significant contribution
from 1-run n, i.e. is large. Choosing kn+1 4mn ensures that Vmnγ is small,
hence Vkγ oscillates. Since the quasi-horizon hquasi

k �=Ω(k) is small, the 1-runs
are short enough to keep U1m small so that U1∞=0.

Proof. The assumption ensures that there exists a sequence m1, m2, m3, ... for
which

mnγmn

Γmn

≥ n2 We further (can) require Γmn < 1
2Γmn−1+1 (m0 := 0)

For each mn we choose kn such that Γkn ≈ 2Γmn . More precisely, since Γ is
monotone decreasing and Γmn <2Γmn≤Γmn−1+1, there exists (a unique) kn in
the range mn−1 <kn <mn such that Γkn+1 < 2Γmn ≤Γkn . We choose a binary
reward sequence with rk =1 iff kn≤k<mn for some n. This implies

n2 ≤ mnγmn

Γmn

=
mn

mn − kn − 1
(mn − kn − 1)γmn

Γmn

≤ mn

mn − kn − 1
Γkn+1 − Γmn

Γmn

≤ mn

mn − kn − 1

=⇒ mn − kn

mn
=

mn − kn − 1
mn

+
1
mn

≤ 1
n2 +

γmn

Γmn

1
n2 ≤ 2

n2

=⇒ U1mn ≤
1
mn

[kl − 1] +
1
mn

n∑
n′=l

[mn′ − kn′] ≤ kl

mn
+

n∑
n′=l

mn′ − kn′

mn′

≤ kl

mn
+

n∑
n′=l

2
n′2 ≤ kl

mn
+

2
l− 1

hence by (1) we have U1∞=limnU1,mn−1 ≤ 2
l−1 ∀l, hence U1∞=0. On the other

hand

ΓknVknγ = [Γkn−Γmn] + ΓmnVmnγ ⇒ 1− Vknγ

1− Vmnγ
=

Γmn

Γkn

≤ 1
2

This shows that Vkγ cannot converge to an α<1. Theorem 19 and U1∞=0
implies that Vkγ can also not converge to 1, hence V∞γ does not exist.

6 Discounted Implies Average Value

We now turn to the converse direction that existence of V∞γ can imply existence
of U1∞ and their equality, which holds under a nearly converse condition on the
discount: Roughly, the effective horizon has to grow linearly with k or slower.

General Discounting Versus Average Reward 255

Theorem 17 (Discounted implies average value, V∞γ ⇒U1∞).
Assume supk

Γk

kγk
<∞ and monotone γ. If Vkγ→α, then U1m→α.

For instance, power or faster and geometric discounts satisfy the condition, but
harmonic does not. Note that power discounts satisfy the conditions of Theorems
15 and 17, i.e. U1∞ exists iff V∞γ in this case.

The intuition behind Theorem 17 for binary reward is as follows: The run-
length needs to be small compared to the quasi-horizon, i.e. o(hquasi

k), to ensure
convergence of Vkγ . The condition in Theorem 17 ensures that the quasi-horizon
hquasi

k =O(k) grows at most linearly, hence the run-length o(m) is a small fraction
of the sequence up to m. This ensures that U1m ceases to oscillate. The formal
proof slices U1m in “curves” to a weighted mixture of discounted values Vkγ .
Then Vkγ→α implies U1m→α.

Proof. We represent Ukm as a (0≤ bj-weighted) mixture of Vjγ for k≤ j≤m.
The condition c := supk

Γk

kγk
<∞ ensures that the redundant tail ∝ Vm+1,γ is

“negligible”. Fix k large enough so that |Vjγ−α|<ε ∀j≥k. Then
m∑

j=k

bj(α∓ ε) ≶
m∑

j=k

bjVjγ =
m∑

j=k

bj

Γj

m∑
i=j

γiri +
m∑

j=k

bj

Γj

∞∑
i=m+1

γiri (6)

=
m∑

i=k

⎛⎝ i∑
j=k

bj

Γj

⎞⎠ γiri +

⎛⎝ m∑
j=k

bj

Γj

⎞⎠Γm+1Vm+1,γ

In order for the first term on the r.h.s. to be a uniform mixture, we need
i∑

j=k

bj

Γj
=

1
γi

1
m− k + 1

(k ≤ i ≤ m) (7)

Setting i=k and, respectively, subtracting an i� i−1 term we get
bk

Γk
=

1
γk

1
m− k + 1

and
bi

Γi
=
(

1
γi
− 1

γi−1

)
1

m− k + 1
≥ 0 for k < i ≤ m

So we can evaluate the b-sum in the l.h.s. of (6) to

m∑
j=k

bj =
1

m− k + 1

⎡⎣ m∑
j=k+1

(
Γj

γj
− Γj

γj−1

)
+

Γk

γk

⎤⎦
=

1
m− k + 1

⎡⎣ m∑
j=k

(
Γj

γj
− Γj+1

γj

)
+

Γm+1

γm

⎤⎦
= 1 +

Γm+1

γm(m− k + 1)
=: 1 + cm (8)

where we shifted the sum index in the second equality, and used Γj−Γj+1 =γj

in the third equality. Inserting (7) and (8) into (6) we get

(1+ cm)(α∓ ε) ≶
m∑

i=k

1
m− k + 1

ri +
Γm+1

γm(m− k + 1)
Vm+1,γ ≶ Ukm + cm(α± ε)

256 M. Hutter

Note that the excess cm over unity in (8) equals the coefficient of the tail con-
tribution Vm+1,γ . The above bound shows that

|Ukm − α| ≤ (1 + 2cm)ε ≤ (1 + 4c)ε for m ≥ 2k

Hence Um/2,m→α, which implies U1m→α by Lemma 11.

Theorem 17 can, for instance, be applied to Example 4. Examples 7 and 8
demonstrate that the conditions in Theorem 17 cannot be dropped. The fol-
lowing proposition shows more strongly, that the sufficient condition is actually
necessary, i.e. cannot be weakened.

Proposition 18 (V∞γ �⇒ U1∞). For every monotone γ with supk
Γk

kγk
=∞,

there are r for which V∞γ exists, but not U1∞.

Proof. The assumption ensures that there exists a sequence k1, k2, k3, ... for
which knγkn

Γkn

≤ 1
n2 We further choose kn+1 > 8kn

We choose a binary reward sequence with rk =1 iff kn≤k<mn :=2kn.

Vknγ =
1

Γkn

∞∑
l=n

γkl
+ ... + γ2kl−1 ≤

1
Γkn

∞∑
l=n

klγkl

≤
∞∑

l=n

klγkl

Γkl

≤
∞∑

l=n

1
l2
≤ 1

n− 1
→ 0

which implies V∞γ =0 by (4). In a sense the 1-runs become asymptotically very
sparse. On the other hand,

U1,mn−1 ≥ 1
mn

[rkn + ... + rmn−1] = 1
mn

[mn − kn] = 1
2 but

U1,kn+1−1 ≤ 1
kn+1−1 [r1 + ... + rmn−1] ≤ 1

8kn
[mn − 1] ≤ 1

4 ,

hence U1∞ does not exist.

7 Average Equals Discounted Value

Theorem 15 and 17 together imply for nearly all discount types (all in our
table) that U1∞ =V∞γ if U1∞ and V∞γ both exist. But Example 9 shows that
there are γ for which simultaneously supk

Γk

kγk
=∞ and supk

kγk

Γk
=∞, i.e. neither

Theorem 15, nor Theorem 17 applies. This happens for quasi-horizons that grow
alternatingly super- and sub-linear. Luckily, it is easy to also cover this missing
case, and we get the remarkable result that U1∞ equals V∞γ if both exist, for
any monotone discount sequence γ and any reward sequence r, whatsoever.

Theorem 19 (Average equals discounted value, U1∞ =V∞γ).
Assume monotone γ and that U1∞ and V∞γ exist. Then U1∞=V∞γ .

General Discounting Versus Average Reward 257

Proof. Case 1, supk
Γk

kγk
<∞: By assumption, there exists an α such that Vkγ→α.

Theorem 17 now implies U1m→α, hence U1∞=V∞γ =α.
Case 2, supk

Γk

kγk
= ∞: This implies that there is an infinite subsequence

k1 < k2 < k3,... for which Γki/kiγki → ∞, i.e. cki := kiγki/Γki ≤ c < ∞. By
assumption, there exists an α such that U1m → α. If we look at the proof of
Theorem 15, we see that it still implies |Vkiγ−α|< (1+cki)ε≤ (1+2c)ε on this
subsequence. Hence Vkiγ→α. Since we assumed existence of the limit Vkγ this
shows that the limit necessarily equals α, i.e. again U1∞=V∞γ =α.

Considering the simplicity of the statement in Theorem 19, the proof based on
the proofs of Theorems 15 and 17 is remarkably complex. A simpler proof, if it
exists, probably avoids the separation of the two (discount) cases.

Example 8 shows that the monotonicity condition in Theorem 19 cannot be
dropped.

8 Discussion

We showed that asymptotically, discounted and average value are the same, pro-
vided both exist. This holds for essentially arbitrary discount sequences (interest-
ing since geometric discount leads to agents with bounded horizon) and arbitrary
reward sequences (important since reality is neither ergodic nor MDP). Further,
we exhibited the key role of power discounting with linearly increasing effective
horizon. First, it separates the cases where existence of U1∞ implies/is-implied-
by existence of V∞γ . Second, it neither requires nor introduces any artificial
time-scale; it results in an increasingly farsighted agent with horizon propor-
tional to its own age. In particular, we advocate the use of quadratic discounting
γk = 1/k2. All our proofs provide convergence rates, which could be extracted
from them. For simplicity we only stated the asymptotic results. The main the-
orems can also be generalized to probabilistic environments. Monotonicity of γ
and boundedness of rewards can possibly be somewhat relaxed. A formal relation
between effective horizon and the introduced quasi-horizon may be interesting.

References

[AA99] K. E. Avrachenkov and E. Altman. Sensitive discount optimality via nested
linear programs for ergodic Markov decision processes. In Proceedings of
Information Decision and Control 99, pages 53–58, Adelaide, Australia,
1999. IEEE.

[BF85] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of
Experiments. Chapman and Hall, London, 1985.

[BT96] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[FLO02] S. Frederick, G. Loewenstein, and T. O’Donoghue. Time discounting and
time preference: A critical review. Journal of Economic Literature, 40:351–
401, 2002.

258 M. Hutter

[Hut02] M. Hutter. Self-optimizing and Pareto-optimal policies in general environ-
ments based on Bayes-mixtures. In Proc. 15th Annual Conf. on Computa-
tional Learning Theory (COLT’02), volume 2375 of LNAI, pages 364–379,
Sydney, 2002. Springer, Berlin.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Springer, Berlin, 2005. 300 pages,
http://www.idsia.ch/∼ marcus/ai/uaibook.htm.

[Kak01] S. Kakade. Optimizing average reward using discounted rewards. In Proc.
14th Conf. on Computational Learning Theory (COLT’01), volume 2111 of
LNCS, pages 605–615, Amsterdam, 2001. Springer.

[Kel81] F. P. Kelly. Multi-armed bandits with discount factor near one: The
Bernoulli case. Annals of Statistics, 9:987–1001, 1981.

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
a survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[KV86] P. R. Kumar and P. P. Varaiya. Stochastic Systems: Estimation, Identifi-
cation, and Adaptive Control. Prentice Hall, Englewood Cliffs, NJ, 1986.

[Mah96] S. Mahadevan. Sensitive discount optimality: Unifying discounted and aver-
age reward reinforcement learning. In Proc. 13th International Conference
on Machine Learning, pages 328–336. Morgan Kaufmann, 1996.

[RN03] S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 2003.

[Sam37] P. Samuelson. A note on measurement of utility. Review of Economic
Studies, 4:155–161, 1937.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[Str56] R. H. Strotz. Myopia and inconsistency in dynamic utility maximization.
Review of Economic Studies, 23:165–180, 1955–1956.

[VW04] N. Vieille and J. W. Weibull. Dynamic optimization with non-exponential
discounting: On the uniqueness of solutions. Technical Report WP No. 577,
Department of Economics, Boston Univeristy, Boston, MA, 2004.

The Missing Consistency Theorem for Bayesian
Learning: Stochastic Model Selection

Jan Poland�

Graduate School of Information Science and Technology
Hokkaido University, Japan
jan@ist.hokudai.ac.jp

http://www-alg.ist.hokudai.ac.jp/∼jan

Abstract. Bayes’ rule specifies how to obtain a posterior from a class of
hypotheses endowed with a prior and the observed data. There are three
principle ways to use this posterior for predicting the future: marginal-
ization (integration over the hypotheses w.r.t. the posterior), MAP (tak-
ing the a posteriori most probable hypothesis), and stochastic model
selection (selecting a hypothesis at random according to the posterior
distribution). If the hypothesis class is countable and contains the data
generating distribution, strong consistency theorems are known for the
former two methods, asserting almost sure convergence of the predictions
to the truth as well as loss bounds. We prove the first corresponding re-
sults for stochastic model selection. As a main technical tool, we will
use the concept of a potential: this quantity, which is always positive,
measures the total possible amount of future prediction errors. Precisely,
in each time step, the expected potential decrease upper bounds the ex-
pected error. We introduce the entropy potential of a hypothesis class as
its worst-case entropy with regard to the true distribution. We formulate
our results in the online classification framework, but they are equally
applicable to the prediction of non-i.i.d. sequences.

1 Introduction

Bayesian learning is one of the theoretically best-founded and practically most
successful induction principles at all, with numerous important applications in
science. Establishing consistency, i.e., proving that a certain algorithm converges
to the correct behavior after some initial errors, and also bounding the number
of these errors, is one of the most fundamental duties of statistics and theoretical
computer science.

A Bayesian learner starts with a class of hypotheses about the behavior of
the particular “world” he is operating in1. This class is endowed with a prior,

� This work was supported by JSPS 21st century COE program C01.
1 We’ll spend a large portion of this paper on general countably infinite hypothesis

classes. Although such classes are typically computationally infeasible, this is inter-
esting and important to study, as we will discuss at the end of this introduction.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 259–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 J. Poland

i.e., each hypothesis is assigned a prior belief probability such that these proba-
bilities sum up to one (or integrate up to one, if the hypothesis class is continu-
ously parameterized). It is helpful to interpret the prior just as a belief and not
probabilistically, i.e. we assume no sampling mechanism that selects hypotheses
according to the prior.

After observing some data, the learner uses Bayes’ rule to obtain the posterior.
If we ask the learner to give a prediction about the next observation, he has three
different principle ways to compute this prediction:

1. Marginalization, that is, summing (or integrating) over the hypothesis class
w.r.t. the posterior and using the resulting mixture prediction.

2. Maximum a posteriori (MAP) model selection, that is, selecting the hypoth-
esis with the highest posterior probability and predicting according to this
model. This is closely related to the important minimum description length
(MDL) principle.

3. Stochastic model selection, which consists of randomly sampling a hypothesis
according to the posterior and predicting as does this hypothesis. Note that
we use the terms “model” and “hypothesis” interchangeably. Thus, stochas-
tic model selection defines a randomized learner, in contrast to the previous
two ones which, for given data, obviously yield deterministic outputs.

All these three Bayesian predictors are both theoretically and practically very
important. Marginalization directly corresponds to Bayes’ principle (without
fixing a particular model), but integrating over the model class may be com-
putationally expensive, and the mixture may be outside the range of all model
outputs. If, for efficiency or output range or other reasons, we are interested in
just one model’s predictions, MAP/MDL or stochastic model selection are the
choice, the latter being preferable if the MAP/MDL estimator might be biased.
Many practical learning methods (e.g. for artificial neural networks) are approx-
imations to MAP or stochastic model selection. Also, some fundamental recent
theoretical progress is associated with stochastic model selection, namely active
learning using “query by committee” [1] and the PAC-Bayesian theorems [2].

In this work, we will consider the framework of online learning, where the
learner is asked for a prediction after each piece of data he observes, i.e., after
each discrete time step t = 1, 2, 3, . . . Our results apply for both the popular
classification setup, where the learner gets some input and has to predict the
corresponding label, and the sequence prediction setup where there are no inputs.
Since classification is more important in practice, we will formulate all results in
this framework, they immediately transfer to sequence prediction.

In case of proper learning, i.e., if the data is generated by some distribution
contained in the model class, strong consistency theorems are known for on-
line prediction by both marginalization and MAP or MDL. Pioneering work has
been, among others, [3, 4] for marginalization and [5] for MDL/MAP. In the
case of a discrete model class, particularly nice assertions have been proven for
marginalization and MDL/MAP, stating finite bounds on the expected cumu-
lative quadratic prediction error, and implying almost sure convergence of the

The Missing Consistency Theorem for Bayesian Learning 261

predictions to the truth. For marginalization, this is Solomonoff’s theorem [6],
while for MDL/MAP the bounds have been obtained only recently [7, 8].

In this work, we will show the first bounds of this type for a Bayesian stochastic
model selection learner on a discrete model class. By doing so, we prove the first
consistency theorems for such a learner to our knowledge, and we complete the
proof of the following important fact: All Bayesian learners based on countable
hypothesis class are consistent with probability one under the proper learning
assumption. More precisely, we will complete the proof of the following theorem.

Theorem 1. Consider an online classification setup, i.e., there is a sequence of
inputs z1, z2, . . . in an arbitrary input space Z generated by any mechanism. The
sequence of labels x1, x2, . . . in some finite label space or alphabet X is generated
by a probability distribution μ(·|z) on X , the notation indicates that μ depends
on the input z. There is a countable hypothesis or model class C, endowed with
a prior w = (wν)ν∈C, and containing the true distribution μ. Since μ ∈ C,
it makes sense to speak about the true prior weight wμ. For some observation
history h<t = (z1, x1, z2, x2, . . . , zt−1, xt−1) and current input zt, define

ξ(·|zt, h<t) = the predictive distribution (on X) obtained by marginalization,
 (·|zt, h<t) = the predictive distribution due to the MAP predictor, and
Ξ(·|zt, h<t) = the predictive distribution given by stochastic model selection

(see Section 2 for more technical details and definitions, in particular the def-
inition of Ξ, while will not be formally specified here, please see [8]). Then
the following bounds hold on the expected cumulative quadratic error (expecta-
tion is w.r.t. μ and, in case of stochastic model selection, also w.r.t. the internal
randomization of Ξ, and all of the subsequent logarithms are natural):

∞∑
t=1

E
∑
x∈X

(
ξ(x|zt, h<t)− μ(x|zt)

)2 ≤ logw−1
μ , (1)

∞∑
t=1

E
∑
x∈X

(
 (x|zt, h<t)− μ(x|zt)

)2 ≤ O
(
w−1

μ

)
, (2)

∞∑
t=1

E
∑
x∈X

(
Ξ(x|zt, h<t)− μ(x|zt)

)2 ≤ O
(
logw−1

μ Π(w)
)
. (3)

Here, Π(w) is the entropy potential of the (prior of the) model class, defined as

Π
(
(wν)ν∈N

)
= sup

{
H
(
(w̃ν∑

ν′ w̃ν′)ν

)
: w̃μ = wμ ∧ w̃ν ≤ wν ∀ν ∈ C \ {μ}

}
, (4)

with H being the ordinary entropy function. These error bounds imply in partic-
ular almost sure convergence of the respective predictive probabilities to the true
probabilities μ(x|zt), for all x ∈ X .

The same bounds hold for the setup of non-i.i.d. sequence prediction [8].

Assertion (1) has been proven in [6] for the binary case (see [9] for a much more
accessible proof and Section 2 below for a slightly different one); (2) is due to

262 J. Poland

[7], while (3) will be shown in this paper. The reader will immediately notice the
different quality of the bounds on the r.h.s.: By Kraft’s inequality, the bound
logw−1

μ (1) corresponds to the description length for μ within a prefix code,
where for all hypotheses there are codewords of length of the negative log of
the respective weight. This is an excellent and non-improvable error bound, in
contrast to the second one for MDL/MAP, which is exponentially larger. This
quantity is generally huge and therefore may be interpreted asymptotically, but
its direct use for applications is questionable. Fortunately, bounds of logarithmic
order can be proven in many important cases [5, 10]. For stochastic model selec-
tion, we will study the magnitute of the entropy potential in Section 5, showing
that this quantity is of order logw−1

μ provided that the weights do not decay too
slowly. Hence, in these favorable cases, the bound of (3) is O

(
(logw−1

μ)2
)
. How-

ever, Π(w) is always bounded by H · w−1
μ (with H being the ordinary entropy

of the model class).
The bounds in Theorem 1 do not only imply consistency with probability one,

but also performance guarantees w.r.t. arbitrary bounded loss functions :

Corollary 2. For each input z, let (·, ·|z) : (x̂, x) �→ (x̂, x|z) ∈ [0, 1] be a
loss function known to the learner, depending on the true outcome x and the
prediction x̂ (may also depend on the time, but we don’t complicate notation by
making this explicit). Let μ

<∞ be the cumulative loss of a predictor knowing the
true distribution μ, where the predictions are made in a Bayes optimal way (i.e.
choosing the prediction arg minx̂ Ex∼μ(x̂, x|zt) for current input zt), and Ξ

<∞
be the corresponding quantity for the stochastic model selection learner. Then
the loss of the learner is bounded by

EΞ
<∞ ≤ Eμ

<∞ + O
(
logw−1

μ Π(w)
)

+ O
(√

logw−1
μ Π(w)Eμ

<∞
)
. (5)

Corresponding assertions hold for the Bayes mixture [11] and MAP [8]. The
proof of this statement follows from Theorem 1 by using techniques as in [8,
Lemma 24–26]. The bound may seem weak to a reader familiar with another
learning model, prediction with expert advice, which has received quite some at-
tention since [12, 13]. Algorithms of this type are based on a class of experts
rather than hypotheses, and proceed by randomly selecting experts according
to a (non-Bayesian) posterior based on past performance of the experts. It is
straightforward to use a hypothesis as an expert. Thus the experts theorems
(for instance [14, Theorem 8(i)]) imply a bound similar to (5), but without any
assumption on the data generating process μ, instead the bounds are relative to
the best expert (hypothesis) in hindsight ν̂ (and moreover with logw−1

ν̂ Π(w)
replaced by logw−1

ν̂). So the experts bounds are stronger, which does not neces-
sarily imply that the experts algorithms are better: bounds like (5) are derived
in the worst case over all loss functions, and in this worst case Bayesian learning
is not better than experts learning, even under the proper learning assump-
tion. However, experts algorithms do not provide estimates for the probabilities,
which Bayesian algorithms do provide: in many practically relevant cases learn-
ing probabilities does yield superior performance.

The Missing Consistency Theorem for Bayesian Learning 263

The proofs in this work are based on the method of potential functions. A
potential quantifies the current state of learning, such that the expected error
in the next step does not exceed the expected decrease of the potential function
in the next step. If we then can bound the cumulative decrease of the potential
function, we obtain the desired bounds. The potential method used here has been
inspired by similar idea in prediction with expert advice [15], the proof techniques
are however completely different. We will in particular introduce the entropy
potential, already stated in (4), which may be interpreted as the worst-case
entropy of the model class under all admissible transformations of the weights,
where the weight of the true distribution is kept fixed. The entropy potential is
possibly a novel definition in this work.

Before starting the technical presentation, we discuss the limitations of our on-
line learning setup. A Bayesian online learner defined in the straightforward way
is computationally inefficient, if in each time step the full posterior is computed:
Thus, marginalization, MAP/MDL, and stochastic model selection are equally
inefficient in a naive implementation, and even generally uncomputable in case of
a countable model class. On the other hand, many practical and efficient learn-
ing methods (e.g. training of an artificial neural network) are approximations
to MAP/MDL and stochastic model selection. Moreover, bounds for the online
algorithm also imply bounds for the offline variant, if additional assumptions
(i.i.d.) on the process generating the inputs are satisfied. Also, in some cases
one can sample efficiently from a probability distribution without knowing the
complete distribution.

But the most important contribution of this paper is theoretical, as it clarifies
the learning behavior of all three variants of Baysian learning in the ideal case.
Also, countable hypothesis classes constitute the limit of what is computationally
feasible at all, for this reason they are a core concept in Algorithmic Information
Theory [16]. Proving corresponding results for the likewise important case of
continuously parameterized model classes is, to our knowledge, an open problem.

As already indicated, the dependence of the bound (3) on w−1
μ is logarithmic

if the prior weights decay sufficiently rapidly (precisely polynomially), but linear
in the worst case. This implies the practical recommendation of using a prior
with light tails together with stochastic model selection.

The remainder of this paper is structured as follows. In the next section,
we will introduce the notation and, in order to introduce the methods, prove
Solomonoff’s result with a potential function. In Section 3, we consider stochastic
model selection and prove the main auxiliary result. Section 4 defines the entropy
potential and proves bounds for general countable model class. In Section 5 we
turn to the question how large the newly defined entropy potential can be.

2 Setup and Bayes Mixture

We work in a general discrete Bayesian online classification framework with
stochastic concepts. All our theorems and proofs carry over to the prediction of
non-i.i.d. sequences (this setup is defined e.g. in [8], compare also Remark 4).

264 J. Poland

Let X = {1 . . . |X |} be a finite alphabet, Z be an arbitrary set of possible
inputs, and C = ν1, ν2, . . . be a finite or countable model class. Each model
ν ∈ C specifies probability distributions2 on X for all inputs z ∈ Z, i.e. ν is a
function

ν : z �→
(
ν(x|z)

)
x∈X where ν(x|z) ≥ 0 and

∑
x∈X

ν(x|z) = 1. (6)

Each ν ∈ C is assigned a prior weight wν > 0, where
∑

ν∈C wν = 1. (We need
not consider models with zero prior weight, as they don’t have any impact for
anything of what follows.) In order to make clear that we talk of the prior
or initial weight, opposed to a posterior weight, we will sometimes write winit

ν

instead of wν .
We assume that there is one data generating or true distribution μ ∈ C. Then

the online classification proceeds in discrete time t = 1, 2, . . .: An input zt is gen-
erated by an arbitrary mechanism. The learner must compute a guess

(
p(x)

)
x∈X

(where
∑

x∈X p(x) = 1) for the current probability vector
(
μ(x|zt)

)
x∈X . An out-

come xt ∈ X is sampled according to
(
μ(x|zt)

)
and revealed to the learner (note

that the probabilities
(
μ(x|zt)

)
are not revealed).

After each observation xt, we may update the weights wν by Bayes’ rule, thus
obtaining, after time t− 1 and before time t, the posterior weights

wν(h<t) = wν(h1:t−1) = wν(z1:t−1, x1:t−1) =
wν

∏t−1
i=1 ν(xi|zi)∑

ν′∈C wν′
∏t−1

i=1 ν
′(xi|zi)

,

where h<t = (z<t, x<t) = (z1, x1, z2, x2, . . . , zt−1, xt−1) denotes the history.
Then, in the Bayesian sense it is optimal to estimate the current probabilities
according to the Bayes mixture, i.e., marginalization:

ξ(x|zt, h<t) =
∑
ν∈C

wν(h<t)ν(x|zt).

Example 3. Assume that X is binary and Z contains only a single element.
In this case the observations are Bernoulli trials, i.e. they result from fair or
unfair coin flips. C specifies the set of possible coins we consider, and it is well-
known that all posterior weights but the weight of the true coin will converge
to zero almost surely for t → ∞. With the set of coins C ∼= { 1

4 ,
1
2 ,

3
4} and

the true coin being the fair one, it is easy to see that this example gives a
lower bound Ω(− logwμ) on the expected quadratic error of Bayes mixture and
stochastic model selection predictions, namely the l.h.s. expressions of (9) and
(12), respectively.

Remark 4. The inputs zt are not necessary for the proofs. Thus we could as well
work in an input-less sequence prediction setup, which is common for Solomonoff
2 We don’t consider semimeasures which are common in Algorithmic Information

Theory and used by e.g. [6, 8, 9], as our methods below rely on normalized probability
distributions. This restriction can be possibly lifted to some extent, however we do
not expect the consequences to be very interesting (see also Example 20).

The Missing Consistency Theorem for Bayesian Learning 265

induction (Theorem 5 below). We decided to keep the inputs, as stochastic model
selection is usually considered in a classification setup. We incorporate the inputs
into the history h<t, thus they don’t complicate the notation.

Solomonoff’s [6] remarkable universal induction result tightly bounds the perfor-
mance guarantee for the marginalization learner with an arbitrary input sequence
zt. For introductory purpose, we prove it here in the classification setup. We use
an appropriate potential function, thereby slightly modifying the proof from [9].

Theorem 5. (Solomonoff’s universal induction result) Assume that the data
generating distribution is contained in the model class, i.e. μ ∈ C. Define the
complexity potential as

K(h<t) = − logwμ(h<t). (7)

For any current input zt and any history h<t, this potential satisfies

(i) K(h<t) ≥ 0,

(ii) K(h<t)−Ext∼μ(·|zt)K(h1:t) ≥
∑
x∈X

(
μ(x|zt)− ξ(x|zt, h<t)

)2
. (8)

By summing up the expectation of (ii) while observing (i), we immediately
obtain Solomonoff’s assertion for arbitrary sequence of inputs z1, z2, . . .:

∞∑
t=1

E‖μ− ξ‖22 :=
∞∑

t=1

E
∥∥μ(·|zt)− ξ(·|zt, h<t)

∥∥2
2 ≤ K

init = − logwinit
μ , (9)

where expectation is with respect to μ, and the squared 2-norm of a vector
v ∈ R|X | is defined as usual, ‖v‖22 =

∑
i v

2
i . (Note the abbreviation ‖μ − ξ‖

introduced in the context of the expected sum here.) As we will see in the proof
of Theorem 9, this implies that the marginal (Bayes mixture) probabilities ξ
converge to the true probabilities μ almost surely.

Proof. Clearly, (i) holds. In order to show (ii), we observe that wμ(h1:t) =
wμ(h<t)

μ(xt|zt)
ξ(xt|zt,h<t)

. Then, simplifying the notation by suppressing the history
h<t and the current input zt (e.g. K stands for K(h<t)),

K −EK(x) = K −
∑
x∈X

μ(x)
(
K − log μ(x)

ξ(x)

)
= D

[
μ(·|zt)

∥∥ξ(·|zt, h<t)
]
.

The r.h.s. here is called Kullback-Leibler divergence. By the following lemma it
is an upper bound for

∑
x∈X

(
μ(x|zt)− ξ(x|zt, h<t)

)2. �

Lemma 6. For two probability distributions μ and ρ on X , we have∑
a∈X

(
μ(a)− ρ(a)

)2 ≤∑
a∈X

μ(a) log μ(a)
ρ(a) .

This well known inequality is proven for instance in [9, Sec.3.9.2].

266 J. Poland

By Kraft’s inequality, the complexity K of μ can be interpreted as μ’s description
length. Thus, Solomonoff’s theorem asserts that the predictive complexity (mea-
sured in terms of the quadratic error) coincides with the descriptive complexity,
if the data is rich enough to distinguish the models. Then K can be viewed as
the state of learning in the discrete model class. Observe that only the expected
progress, i.e. decrease of K, is positive. The actual progress depends on the out-
come of xt and is positive if and only if μ(xt) ≥ ξ(xt). If the probability vectors
μ and ξ coincide, then – according to this potential function – no learning takes
place for any observation, as then K(xt) = K for all xt. Hence, the complexity
potential K need not always be a good choice to describe the learning state.

Example 7. Consider a binary alphabet and a model class containing three dis-
tributions ν1, ν2, ν3, predicting νi(1|z) = i

4 for some input z. Suppose μ = ν2,
i.e. the true probability is 1

2 . Then we cannot measure the learning progress after
the observation in terms of K. However, there should be a progress, and indeed
there is one, if we consider the entropy of the model class. This will become clear
with Lemma 8.

3 Stochastic Model Selection

Here is another case where the complexity potential K is not appropriate to
quantify the state of learning. In stochastic model selection, the current predic-
tion vector Ξ(·|zt, h<t) is obtained by randomly sampling a model according to
the current weights wν(h<t) and using this model’s prediction, i.e.

Ξ(·|zt, h<t) = νJ(·|zt) where P(J = i) = wνi(h<t).

Hence, Ξ is a random variable depending on the sampled index J . The following
lemma gives a first indication for a suitable potential function for learning with
stochastic model selection.

Lemma 8. Assume that the current entropy of the model class,

H(h<t) = −
∑
ν∈C

wν(h<t) logwν(h<t),

is finite. Then, for any input zt,

H(h<t)−Ext∼ξ(·|zt,h<t)H(h1:t) =
∑
ν∈C

wν(h<t)
∑
x∈X

ν(x|zt) log ν(x|zt)
ξ(x|zt,h<t)

≥
∑
ν∈C

wν(h<t)
∑
x∈X

(
ν(x|zt)− ξ(x|zt, h<t)

)2 =: E
∥∥Ξ − ξ

∥∥2
2.

Proof. The equality is straightforward computation. Then use Lemma 6 for the
inequality. �

The Missing Consistency Theorem for Bayesian Learning 267

Unfortunately, the l.h.s. of the above inequality contains an expectation w.r.t. ξ
instead of μ. Since on the other hand μ governs the process and generally differs
from ξ, the entropy H is not directly usable as a potential for the Ξ’s deviation
from its mean ξ. The following theorem demonstrates an easy fix, which however
exponentially blows up the potential.

Theorem 9. (Predictive performance of stochastic model selection, loose bound)
Assume that μ ∈ C. Define the potential PE(h<t) = H(h<t) exp

(
K(h<t)

)
=

H(h<t)/wμ(h<t). Then, for any history h<t and any current input zt,

PE(h<t)−Ext∼μ(·|zt)PE(h1:t) ≥ E
∥∥Ξ(·|zt, h<t)− ξ(·|zt, h<t)

∥∥2
2. (10)

Consequently, with Hinit = −
∑

ν∈C w
init
ν logwinit

ν denoting the initial entropy,

∞∑
t=1

E
∥∥Ξ − ξ

∥∥2
2 ≤ P

init
E = Hinit/winit

μ , (11)

∞∑
t=1

E
∥∥Ξ − μ

∥∥2
2 ≤ − log(winit

μ) +Hinit/winit
μ + 2

√
−Hinit log(winit

μ)/winit
μ , (12)

and the predictions by Ξ converge to the true probabilities μ almost surely.

Proof. Recall wμ(h1:t) = wμ(h<t)
μ(xt|zt)

ξ(xt|zt,h<t)
. Since always 1/wμ(h<t) ≥ 1, using

Lemma 8 we obtain (10) by

PE(h<t)−
∑
x∈X

μ(x|zt)PE(h1:t) = 1
wμ(h<t)

(
H(h<t)−

∑
x∈X

ξ(x|zt, h<t)H(h1:t)
)

≥ E
∥∥Ξ(·|zt, h<t)− ξ(·|zt, h<t)

∥∥2
2.

Summing the expectation up yields (11). Using this together with (9) and the

triangle inequality
√∑

E
∥∥Ξ − μ

∥∥2
2 ≤

√∑
E
∥∥Ξ − ξ

∥∥2
2 +

√∑
E
∥∥ξ − μ

∥∥2
2, we

conclude (12). Finally, almost sure convergence follows from

P
(
∃t ≥ n : st ≥ ε

)
= P

(⋃
t≥n

{
st ≥ ε

})
≤
∑
t≥n

P
(
st ≥ ε

)
≤ 1

ε

∞∑
t=n

Est
n→∞−→ 0

for each ε > 0, with st = E
∥∥Ξ(·|zt, h<t)− μ(·|zt, h<t)

∥∥2
2. �

In particular, this theorem shows that the entropy of a model class, if it is initially
finite, necessarily remains finite almost surely. Moreover, it establishes almost
sure asymptotic consistency of prediction by stochastic model selection in our
Bayesian framework. However, it does not provide meaningful error bounds for
all but very small model classes, since the r.h.s. of the bound is exponential in
the complexity, hence possibly huge.

Before continuing to show better bounds, we demonstrate that the entropy is
indeed a lower bound for any successful potential function for stochastic model
selection.

268 J. Poland

Example 10. Let the alphabet be binary. Let wμ = 1− 1
n , in this way K ≈ 1

n and
can be made arbitrary small for large n ∈ N. Fix a target entropy H0 ∈ N and
set K = 2nH0 . Choose a model class that consists of the true distribution, always
predicting 1

2 , and K other distributions with the same prior weight 1/(nK). In
this way, the entropy of the model class is indeed close to H0 log 2. Let the input
set be Z = {1 . . . nH0}, and let νb(1|z) = bz, where bz is the zth bit of ν’s index
b in binary representation. Then it is not hard to see that on the input stream
z1:nH0 = 1, 2, . . . nH0 always μ = ξ. Moreover, at each time, E‖Ξ−μ‖22 = 1/(4n).
Therefore the cumulative error is H0/4, i.e. of order of the entropy. Note that
this error, which can be chosen arbitrarily large, is achievable for arbitrarily
small complexity K.

In the proof of Theorem 9, we used only one “wasteful” inequality, namely
1/wμ(h<t) ≥ 1. The following lemma will be our main tool for obtaining better
bounds.

Lemma 11. (Predictive performance of stochastic model selection, main aux-
iliary result) Suppose that we have some function B(h<t), depending on the
history, with the following properties:

(i) B(h<t) ≥ H(h<t) (dominates the entropy),
(ii) Ext∼μ(·|zt)B(h1:t) ≤ B(h<t) (decreases in expectation),

(iii) the value of B(h<t) can be approximated arbitrarily close
by restricting to a finite model class.

Then, for any history and current input, the potential function defined by

P(h<t) =
[
K(h<t) + log(1 +H(h<t))

]
(1 + B(h<t))

satisfies

P(h<t)−Ext∼μ(·|zt)P(h1:t) ≥ H(h<t)−Ext∼ξ(·|zt,h<t)H(h1:t). (13)

Proof. Because of (iii), we need to prove the lemma only for finite model class,
the countable case then follows by approximation. In this way we avoid dealing
with a Lagrangian on an infinite dimensional space below.

Again we drop all dependencies on the history h<t and the current input zt

from the notation. Then observe that in the inequality chain

K + log(1 +H)−
∑
x∈X

μ(x)
[
K(x) + log(1 +H(x))

]1 + B(x)
1 + B

≥ K + log(1 +H)−
∑
x∈X

μ(x)(1 + B(x))∑
x′ μ(x′)(1 + B(x′))

[
K(x) + log(1 +H(x))

]
(14)

≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
, (15)

(14) follows from assumption (ii), so that we only need to show (15) in order to
complete the proof. We will demonstrate an even stronger assertion:

The Missing Consistency Theorem for Bayesian Learning 269

log(1 +H)−
∑
x∈X

μ̃x

[
log(1 +H(x)) − log μ(x)

ξ(x)

]
≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
(16)

for any probability vector μ̃ = (μ̃x)x∈X ∈ [0, 1]|X | with
∑

x μ̃x = 1.
It is sufficient to prove (16) for all stationary points of the Lagrangian and

all boundary points. In order to cover all of the boundary, we allow μ̃x = 0 for
all x in some subset X0 � X (X0 may be empty). Let X̃ = X \ X0 and define
ξ(X̃) =

∑
x∈X̃ ξ(x), ξ(X0) = 1− ξ(X̃), and ξ̃(x) = ξ(x)/ξ(X̃). Then (16) follows

from

f(μ̃) = log(1 +H)−
∑
x∈X̃

μ̃x

(
Ṽ (x) − log μ(x)

ξ̃(x)

)
≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
, (17)

where Ṽ (x) = log(1−
∑

ν
wνν(x)

ξ̃(x)
log wνν(x)

ξ(x)).
We now identify the stationary points of the Lagrangian

L(μ̃, λ) = f(μ̃)− λ
(∑

x

μ̃x − 1
)
.

The derivative of L w.r.t. all μ̃x vanishes only if

λ = −Ṽ (x) + log μ(x)
ξ̃(x)

for all x ∈ X̃ . (18)

This implies μ(x) = ξ̃(x)eλ+Ṽ (x), and, since the μ(x) sum up to one, 1 =
eλ
∑

x ξ̃(x)eṼ (x). This can be reformulated as λ = − log
[∑

x ξ̃(x)eṼ (x)
]
. Using

this and (18), (17) is transformed to∑
ν∈C wν

∑
x∈X ν(x) log ν(x)

ξ(x)

1 + B
≤ log(1 +H) + λ (19)

= log(1 −
∑
ν∈C

wν logwν)− log
[
1−

∑
x∈X̃

ξ̃(x)
∑
ν∈C

wνν(x)
ξ̃(x)

log wνν(x)
ξ(x)

]
.

The arguments of both outer logarithms on the r.h.s. of (19) are at most 1+B: For
the left one this holds by assumption (i), H ≤ B, and for the right one also by (i)
because Ex∼ξH(x) ≤ H. Since for x ≤ y ≤ 1+B we have log(y)− log(x) ≥ y−x

1+B ,
(19) follows from∑

ν∈C
wν

∑
x∈X0

ν(x) log ν(x)
ξ(x) ≤ −

∑
ν∈C

wν

∑
x∈X0

ν(x) logwν .

But this relation is true by Jensen’s inequality:∑
ν∈C

∑
x∈X0

wνν(x)
ξ(X0) log wνν(x)

ξ(x) ≤ log
(∑

ν∈C

∑
x∈X0

wνν(x)
ξ(X0)

· wνν(x)
ξ(x)

)
≤ 0,

since the wνν(x)
ξ(X0)

sum up to one and always wνν(x)
ξ(x) ≤ 1 holds. �

We now present a simple application of this result for finite model classes.

270 J. Poland

Theorem 12. (Predictive performance of stochastic model selection for finite
model class) Suppose that C consists of N ∈ N models, one of them is μ. Let

PF (h<t) =
[
K(h<t) + log(1 +H(h<t))

]
(1 + logN).

Then PF (h<t)−Ext∼μPF (h1:t) ≥ H(h<t)−
∑

x∈X ξ(x|zt, h<t)H(h1:t) holds for
any history h<t and current input zt, Consequently,

∞∑
t=1

E
∥∥Ξ − ξ

∥∥2
2 ≤ P

init
F = (1 + logN)

[
log(1 +Hinit)− log(winit

μ)
]
. (20)

Proof. Since the entropy of a class with N elements is at most logN , this follows
directly from Lemma 11. �

4 Entropy Potential and Countable Classes

We now generalize Theorem 12 to arbitrary countable model classes. First note
that there is one very convenient fact about the potential function proofs so
far: (8), (10), and (13) all are local assertions, i.e. for a single time instance and
history. If the local expected error is bounded by the expected potential decrease,
then the desired consequence on the cumulative error holds.

The entropy cannot be directly used as B in Lemma 11, since it may increase
under μ-expectation. Intuitively, the problem is the following: There could be a
false model with a quite large weight, such that the entropy is kept “artificially”
low. If this false model is now refuted with high probability by the next observa-
tion, then the entropy may (drastically) increase. An instance is constructed in
the following example. Afterwards, we define the entropy potential, which does
not suffer from this problem.

Example 13. Fix binary alphabet and let C̃ and Z̃ be model class and input
space of Example 10. Let C = C̃ ∪ {νfool}, Z = Z̃ ∪ {0}, wfool = 1− 1

m , and the
rest of the prior of mass 1

m be distributed to the other models as in Example
10. Also the true distribution remains the same one. If the input sequence is
z1:nH0+1 = 0, 1, . . . nH0, and νfool(1|0) = 0 while ν(1|0) = 1 for all other ν, then
like before the cumulative error is (even more than) H0/4, while the entropy can
be made arbitrarily small for large m.

Definition 14. (Entropy potential) Let H
(
(wν)ν∈C

)
= −

∑
ν wν logwν be the

entropy function. The μ-entropy potential (or short entropy potential) of a model
class C containing the true distribution μ is, as already stated in (4),

Π
(
(wν)ν∈N

)
= sup

{
H
(
(w̃ν∑

ν′ w̃ν′)ν

)
: w̃μ = wμ ∧ w̃ν ≤ wν ∀ν ∈ C \ {μ}

}
. (21)

Clearly, Π ≥ H. According to Theorem 9, Π is necessarily finite if H is finite, so
the supremum can be replaced by a maximum. Note that the entropy potential
is finitely approximable in the sense of (iii) in Lemma 11.

The Missing Consistency Theorem for Bayesian Learning 271

Because of space limitations, we state the next two results without proofs. The
first one characterizing Π is rather technical and useful for proving the second
one, which asserts that Π decreases in expectation and therefore paves the way
to proving the main theorem of this paper.

Proposition 15. (Characterization of Π) For S ⊂ C, let w(S) =
∑

ν∈S wν .
There is exactly one subset A ⊂ C with μ ∈ A, such that

− logwν > L(A) := −
∑
ν′∈A

wν′
w(A) logwν′ ⇐⇒ ν ∈ A \ {μ}. (22)

We call A the set of active models (in Π). Then, with w̃ν = exp(−L(A)) for
ν ∈ C \A, w̃ν = wν for ν ∈ A, and k = |C \A|, we have

Π = Π
(
(wν)ν∈C

)
= H

(
(w̃ν∑

ν′ w̃ν′)ν∈N
)

= log
(
k + w(A)eL(A)). (23)

Moreover, this is scaling invariant in the weights, i.e. (22) yields the correct
active set and (23) gives the correct value for weights that are not normalized,
if these unnormalized weights are also used for computing w(A) and L(A).

Theorem 16. For any history h<t and current input zt,∑
xt∈X

μ(xt|zt)Π(h1:t) ≤ Π(h<t).

where the posterior entropy potential is defined as Π(h<t) := Π
(
[wν(h<t)]ν∈C

)
.

This is the proof idea: The l.h.s. is a function of all ν(x|zt) for all ν ∈ C \ {μ}
and x ∈ X . It is possible to prove that the maximum of the l.h.s. is attained if
ν(x|zt) = μ(x|zt) for all ν ∈ C \ {μ} and x ∈ X , which immediately implies the
assertion. To this aim, one first shows that the maximum can be only attained
if in all 1+ |X | sets of weights w,

(
wν(x|zt)

)
x∈X the same models are active (see

Proposition 15). After that, the assertion can be proven.
The previous theorem, together with Lemma 11, immediately implies the main

result of this paper, Theorem 1 (3). More precisely, it reads as follows.

Theorem 17. (Predictive performance of stochastic model selection) For count-
able model class C containing the true distribution μ, define the potential as

P(h<t) =
[
K(h<t) + log(1 +H(h<t))

]
(1 + Π(h<t)).

Then, for any history h<t and current input zt,

P(h<t)−Ext∼μ(·|zt)P(h1:t) ≥ H(h<t)−Ext∼ξ(·|zt,g<t)H(h1:t), and thus
∞∑

t=1

E
∥∥Ξ − ξ

∥∥2
2 ≤ P

init = (1 + Π init)
[
log(1 +Hinit)− log(winit

μ)
]
. (24)

272 J. Poland

5 The Magnitude of the Entropy Potential

In this section, we will answer the question how large the newly defined quan-
tity, the entropy potential, can grow. We start with a general statement that
establishes both an upper and lower bound.

Proposition 18. The μ-entropy potential is always bounded by

Π ≤ H
wμ

.

There are cases where this bound is sharp up to a factor, and also the cumulative
quadratic error is of the same order:

∞∑
t=1

E
∥∥Ξ − ξ

∥∥2
2 = Ω

(
Π
)

= Ω
(H

wμ

)
. (25)

Proof. With A denoting the active set (see Proposition 15), we have that

H ≥ −
∑
ν∈A

wν logwν = w(A)L(A) ≥ wμL(A) ≥ wμΠ.

In order to see that this bound is sharp in general, consider the case of Example
13 and choose large m,n > 1 and H0 := m. Then H ≈ log 2, wμ ≈ 1

m , and Π ≈
H0 log 2 ≈ H/wμ. Moreover, as seen above, the expected cumulative quadratic
error is roughly 1

4H0. Hence, for this model class and prior, (25) holds. �

Proposition 18 gives a worst-case bound which is of course not satisfactory: Using
it in Theorem 17, the resulting bound becomes no better than that of Theorem
9. Fortunately, in case of light tails, i.e., if the weights are not decaying too
slowly, the entropy potential is of order logw−1

μ .

Proposition 19. If wν decays exponentially, Π = O(− logwμ) holds. For sim-
plicity, we may identify ν with its index in an enumeration, then exponential
decay is reads as wν = O(αν) for some α ∈ (0, 1).

If wν decays inverse polynomially, that is, wν = O(ν−b) for b > 1, we have
Π = O

(
− b2

b−1 logwμ

)
.

This proposition is easily verified. However, in the case of slowly decaying weights

of order ν−1(log ν)−b for b > 2, we have Π = Ω(w
− 1

b+1
μ).

The entropy potential is infinite with the usual definition of a universal model
class [16]. But with a slight modification of the prior, it becomes finite. Hence
we can obtain a universal induction result for stochastic model selection:

Example 20. Consider a model class C corresponding to the set of programs on a
universal Turing machine. For ν ∈ C, let wν ∼ 2−K(ν)/K(ν)2, where K denotes
the prefix Kolmogorov complexity – it is shown e.g. in [16] how to obtain such a
construction. Then H = O(1), and Theorem 17 implies consistency of universal

The Missing Consistency Theorem for Bayesian Learning 273

stochastic model selection with this prior and normalization. Had we chosen the
usual “canonical” weights wν ∼ 2−K(ν), then H ∼=

∑
K(ν)2−K(ν) = ∞, since

K is the smallest possible code length to satisfy the Kraft inequality, and any
smaller growth must necessarily result in an infinite sum. Hence the bound for
universal stochastic model selection is infinite with the usual prior.

References

1. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query
by committee algorithm. Machine Learning 28 (1997) 133

2. McAllester, D.: PAC-bayesian stochastic model selection. Machine Learning 51
(2003) 5–21

3. Blackwell, D., Dubins, L.: Merging of opinions with increasing information. Annals
of Mathematical Statistics 33 (1962) 882–887

4. Clarke, B.S., Barron, A.R.: Information-theoretic asymptotics of Bayes methods.
IEEE Trans. Inform. Theory 36 (1990) 453–471

5. Rissanen, J.J.: Fisher Information and Stochastic Complexity. IEEE Trans. Inform.
Theory 42 (1996) 40–47

6. Solomonoff, R.J.: Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Trans. Inform. Theory 24 (1978) 422–432

7. Poland, J., Hutter, M.: Convergence of discrete MDL for sequential prediction. In:
17th Annual Conference on Learning Theory (COLT). (2004) 300–314

8. Poland, J., Hutter, M.: Asymptotics of discrete MDL for online prediction. IEEE
Transactions on Information Theory 51 (2005) 3780–3795

9. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2004)

10. Poland, J., Hutter, M.: On the convergence speed of MDL predictions for Bernoulli
sequences. In: International Conference on Algorithmic Learning Theory (ALT).
(2004) 294–308

11. Hutter, M.: Convergence and loss bounds for Bayesian sequence prediction. IEEE
Trans. Inform. Theory 49 (2003) 2061–2067

12. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. In: 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North
Carolina, IEEE (1989) 256–261

13. Vovk, V.G.: Aggregating strategies. In: Proc. Third Annual Workshop on Com-
putational Learning Theory, Rochester, New York, ACM Press (1990) 371–383

14. Hutter, M., Poland, J.: Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research 6 (2005) 639–660

15. Cesa-Bianchi, N., Lugosi, G.: Potential-based algorithms in on-line prediction and
game theory. Machine Learning 51 (2003) 239–261

16. Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its appli-
cations. 2nd edn. Springer (1997)

Is There an Elegant Universal
Theory of Prediction?

Shane Legg

Dalle Molle Institute for Artificial Intelligence�

Galleria 2, Manno-Lugano 6928
Switzerland

shane@idsia.ch

Abstract. Solomonoff’s inductive learning model is a powerful, univer-
sal and highly elegant theory of sequence prediction. Its critical flaw is
that it is incomputable and thus cannot be used in practice. It is some-
times suggested that it may still be useful to help guide the development
of very general and powerful theories of prediction which are computable.
In this paper it is shown that although powerful algorithms exist, they
are necessarily highly complex. This alone makes their theoretical anal-
ysis problematic, however it is further shown that beyond a moderate
level of complexity the analysis runs into the deeper problem of Gödel
incompleteness. This limits the power of mathematics to analyse and
study prediction algorithms, and indeed intelligent systems in general.

1 Introduction

Solomonoff’s model of induction rapidly learns to make optimal predictions for
any computable sequence, including probabilistic ones [13, 14]. It neatly brings
together the philosophical principles of Occam’s razor, Epicurus’ principle of
multiple explanations, Bayes theorem and Turing’s model of universal computa-
tion into a theoretical sequence predictor with astonishingly powerful properties.
Indeed the problem of sequence prediction could well be considered solved [9, 8],
if it were not for the fact that Solomonoff’s theoretical model is incomputable.

Among computable theories there exist powerful general predictors, such as
the Lempel-Ziv algorithm [5] and Context Tree Weighting [18], that can learn
to predict some complex sequences, but not others. Some prediction methods,
based on the Minimum Description Length principle [12] or the Minimum Mes-
sage Length principle [17], can even be viewed as computable approximations
of Solomonoff induction [10]. However in practice their power and generality are
limited by the power of the compression methods employed, as well as having a
significantly reduced data efficiency as compared to Solomonoff induction [11].

Could there exist elegant computable prediction algorithms that are in some
sense universal? Unfortunately this is impossible, as pointed out by Dawid
[4]. Specifically, he notes that for any statistical forecasting system there exist

� This work was funded by the grant SNF 200020-107616.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 274–287, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Is There an Elegant Universal Theory of Prediction? 275

sequences which are not calibrated. Dawid also notes that a forecasting system
for a family of distributions is necessarily more complex than any forecasting
system generated from a single distribution in the family. However, he does not
deal with the complexity of the sequences themselves, nor does he make a pre-
cise statement in terms of a specific measure of complexity, such as Kolmogorov
complexity. The impossibility of forecasting has since been developed in con-
siderably more depth by V’yugin [16], in particular he proves that there is an
efficient randomised procedure producing sequences that cannot be predicted
(with high probability) by computable forecasting systems.

In this paper we study the prediction of computable sequences from the per-
spective of Kolmogorov complexity. The central question we look at is the pre-
diction of sequences which have bounded Kolmogorov complexity. This leads us
to a new notion of complexity: rather than the length of the shortest program
able to generate a given sequence, in other words Kolmogorov complexity, we
take the length of the shortest program able to learn to predict the sequence.
This new complexity measure has the same fundamental invariance property as
Kolmogorov complexity, and a number of strong relationships between the two
measures are proven. However in general the two may diverge significantly. For
example, although a long random string that indefinitely repeats has a very high
Kolmogorov complex, this sequence also has a relatively simple structure that
even a simple predictor can learn to predict.

We then prove that some sequences, however, can only be predicted by very
complex predictors. This implies that very general prediction algorithms, in par-
ticular those that can learn to predict all sequences up to a given Kolmogorov
complex, must themselves be complex. This puts an end to our hope of there be-
ing an extremely general and yet relatively simple prediction algorithm. We then
use this fact to prove that although very powerful prediction algorithms exist,
they cannot be mathematically discovered due to Gödel incompleteness. Given
how fundamental prediction is to intelligence, this result implies that beyond a
moderate level of complexity the development of powerful artificial intelligence
algorithms can only be an experimental science.

2 Preliminaries

An alphabet A is a finite set of 2 or more elements which are called symbols. In
this paper we will assume a binary alphabet B := {0, 1}, though all the results
can easily be generalised to other alphabets. A string is a finite ordered n-tuple
of symbols denoted x := x1x2 . . . xn where ∀i ∈ {1, . . . , n}, xi ∈ B, or more
succinctly, x ∈ Bn. The 0-tuple is denoted λ and is called the null string. The
expression B≤n has the obvious interpretation, and B∗ :=

⋃
n∈N

Bn. The length
lexicographical ordering is a total order on B∗ defined as λ < 0 < 1 < 00 < 01 <
10 < 11 < 000 < 001 < · · ·. A substring of x is defined xj:k := xjxj+1 . . . xk

where 1 ≤ j ≤ k ≤ n. By |x| we mean the length of the string x, for example,
|xj:k| = k − j + 1. We will sometimes need to encode a natural number as a
string. Using simple encoding techniques it can be shown that there exists a

276 S. Legg

computable injective function f : N → B∗ where no string in the range of f is a
prefix of any other, and ∀n ∈ N : |f(n)| ≤ log2 n + 2 log2 log2 n + 1 = O(log n).

Unlike strings which always have finite length, a sequence ω is an infinite
list of symbols x1x2x3 . . . ∈ B∞. Of particular interest to us will be the class
of sequences which can be generated by an algorithm executed on a universal
Turing machine:

Definition 1. A monotone universal Turing machine U is defined as a
universal Turing machine with one unidirectional input tape, one unidirectional
output tape, and some bidirectional work tapes. Input tapes are read only, output
tapes are write only, unidirectional tapes are those where the head can only move
from left to right. All tapes are binary (no blank symbol) and the work tapes are
initially filled with zeros. We say that U outputs/computes a sequence ω on input
p, and write U(p) = ω, if U reads all of p but no more as it continues to write ω
to the output tape.

We fix U and define U(p, x) by simply using a standard coding technique to
encode a program p along with a string x ∈ B∗ as a single input string for U .

Definition 2. A sequence ω ∈ B∞ is a computable binary sequence if there
exists a program q ∈ B∗ that writes ω to a one-way output tape when run on a
monotone universal Turing machine U , that is, ∃q ∈ B∗ : U(q) = ω. We denote
the set of all computable sequences by C.

A similar definition for strings is not necessary as all strings have finite length
and are therefore trivially computable.

Definition 3. A computable binary predictor is a program p ∈ B∗ that on
a universal Turing machine U computes a total function B∗ → B.

For simplicity of notation we will often write p(x) to mean the function computed
by the program p when executed on U along with the input string x, that is,
p(x) is short hand for U(p, x). Having x1:n as input, the objective of a predictor
is for its output, called its prediction, to match the next symbol in the sequence.
Formally we express this by writing p(x1:n) = xn+1.

As the algorithmic prediction of incomputable sequences, such as the halting
sequence, is impossible by definition, we only consider the problem of predicting
computable sequences. To simplify things we will assume that the predictor has
an unlimited supply of computation time and storage. We will also make the
assumption that the predictor has unlimited data to learn from, that is, we
are only concerned with whether or not a predictor can learn to predict in the
following sense:

Definition 4. We say that a predictor p can learn to predict a sequence
ω := x1x2 . . . ∈ B∞ if there exists m ∈ N such that ∀n ≥ m : p(x1:n) = xn+1.

The existence of m in the above definition need not be constructive, that is,
we might not know when the predictor will stop making prediction errors for

Is There an Elegant Universal Theory of Prediction? 277

a given sequence, just that this will occur eventually. This is essentially “next
value” prediction as characterised by Barzdin [1], which follows from Gold’s
notion of identifiability in the limit for languages [7].

Definition 5. Let P (ω) be the set of all predictors able to learn to predict ω.
Similarly for sets of sequences S ⊂ B∞, define P (S) :=

⋂
ω∈S P (ω).

A standard measure of complexity for sequences is the length of the shortest
program which generates the sequence:

Definition 6. For any sequence ω ∈ B∞ the monotone Kolmogorov com-
plexity of the sequence is,

K(ω) := min
q∈B∗

{|q| : U(q) = ω},

where U is a monotone universal Turing machine. If no such q exists, we define
K(ω) :=∞.

It can be shown that this measure of complexity depends on our choice of univer-
sal Turing machine U , but only up to an additive constant that is independent
of ω. This is due to the fact that a universal Turing machine can simulate any
other universal Turing machine with a fixed length program.

In essentially the same way as the definition above we can define the Kol-
mogorov complexity of a string x ∈ Bn, written K(x), by requiring that U(q)
halts after generating x on the output tape. For an extensive treatment of Kol-
mogorov complexity and some of its applications see [10] or [2].

As many of our results will have the above property of holding within an
additive constant that is independent of the variables in the expression, we will
indicate this by placing a small plus above the equality or inequality symbol.
For example, f(x) <

+
g(x) means that that ∃c ∈ R, ∀x : f(x) < g(x) + c. When

using standard “Big O” notation this is unnecessary as expressions are already
understood to hold within an independent constant, however for consistency of
notation we will use it in these cases also.

3 Prediction of Computable Sequences

The most elementary result is that every computable sequence can be predicted
by at least one predictor, and that this predictor need not be significantly more
complex than the sequence to be predicted.

Lemma 1. ∀ω ∈ C, ∃p ∈ P (ω) : K(p) <
+
K(ω).

Proof. As the sequence ω is computable, there must exist at least one algorithm
that generates ω. Let q be the shortest such algorithm and construct an algorithm
p that “predicts” ω as follows: Firstly the algorithm p reads x1:n to find the
value of n, then it runs q to generate x1:n+1 and returns xn+1 as its prediction.
Clearly p perfectly predicts ω and |p| < |q|+ c, for some small constant c that is
independent of ω and q. ��

278 S. Legg

Not only can any computable sequence be predicted, there also exist very simple
predictors able to predict arbitrarily complex sequences:

Lemma 2. There exists a predictor p such that ∀n ∈ N, ∃ω ∈ C : p ∈ P (ω) and
K(ω) > n.

Proof. Take a string x such that K(x) = |x| ≥ 2n, and from this define a
sequence ω := x0000 Clearly K(ω) > n and yet a simple predictor p that
always predicts 0 can learn to predict ω. ��

The predictor used in the above proof is very simple and can only “learn” se-
quences that end with all 0’s, albeit where the initial string can have arbitrarily
high Kolmogorov complexity. It may seem that this is due to sequences that are
initially complex but where the “tail complexity”, defined lim infi→∞K(ωi:∞),
is zero. This is not the case:

Lemma 3. There exists a predictor p such that ∀n ∈ N, ∃ω ∈ C : p ∈ P (ω) and
lim infi→∞ K(ωi:∞) > n.

Proof. A predictor p for eventually periodic sequences can be defined
as follows: On input ω1:k the predictor goes through the ordered pairs
(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), . . . checking for each pair (a, b)
whether the string ω1:k consists of an initial string of length a followed by a
repeating string of length b. On the first match that is found p predicts that the
repeating string continues, and then p halts. If a+b > k before a match is found,
then p outputs a fixed symbol and halts. Clearly K(p) is a small constant and p
will learn to predict any sequence that is eventually periodic.

For any (m,n) ∈ N2, let ω := x(y∗) where x ∈ Bm, and y ∈ Bn is a random
string, that is, K(y) = n. As ω is eventually periodic p ∈ P (ω) and also we see
that lim infi→∞ K(ωi:∞) = min{K(ωm+1:∞),K(ωm+2:∞), . . . ,K(ωm+n:∞)}.

For any k ∈ {1, . . . , n} let q∗k be the shortest program that can generate
ωm+k:∞. We can define a halting program q′k that outputs y where this program
consists of q∗k, n and k. Thus, |q′k| = |q∗k| + O(log n) = K(ωk:∞) + O(log n). As
n = K(y) ≤ |q′k|, we see that K(ωk:∞) > n−O(log n). As n and k are arbitrary
the result follows. ��

Using a more sophisticated version of this proof it can be shown that there ex-
ist predictors that can learn to predict arbitrary regular or primitive recursive
sequences. Thus we might wonder whether there exists a computable predictor
able to learn to predict all computable sequences. Unfortunately, no universal
predictor exists, indeed for every predictor there exists a sequence which it can-
not predict at all:

Lemma 4. For any predictor p there constructively exists a sequence ω :=
x1x2 . . . ∈ C such that ∀n ∈ N : p(x1:n) �= xn+1 and K(ω) <

+
K(p).

Proof. For any computable predictor p there constructively exists a computable
sequence ω = x1x2x3 . . . computed by an algorithm q defined as follows: Set

Is There an Elegant Universal Theory of Prediction? 279

x1 = 1 − p(λ), then x2 = 1 − p(x1), then x3 = 1 − p(x1:2) and so on. Clearly
ω ∈ C and ∀n ∈ N : p(x1:n) = 1− xn+1.

Let p∗ be the shortest program that computes the same function as p and
define a sequence generation algorithm q∗ based on p∗ using the procedure above.
By construction, |q∗| = |p∗| + c for some constant c that is independent of p∗.
Because q∗ generates ω, it follows that K(ω) ≤ |q∗|. By definition K(p) = |p∗|
and so K(ω) <

+
K(p). ��

Allowing the predictor to be probabilistic does not fundamentally avoid the
problem of Lemma 4. In each step, rather than generating the opposite to what
will be predicted by p, instead q attempts to generate the symbol which p is
least likely to predict given x1:n. To do this q must simulate p in order to esti-
mate Pr

(
p(x1:n) = 1

∣∣x1:n
)
. With sufficient simulation effort, q can estimate this

probability to any desired accuracy for any x1:n. This produces a computable se-
quence ω such that ∀n ∈ N : Pr

(
p(x1:n) = xn+1

∣∣x1:n
)

is not significantly greater
than 1

2 , that is, the performance of p is no better than a predictor that makes
completely random predictions.

As probabilistic prediction complicates things without avoiding this funda-
mental problem, in the remainder of this paper we will consider only determinis-
tic predictors. This will also allow us to see the roots of this problem as clearly as
possible. With the preliminaries covered, we now move on to the central problem
considered in this paper: Predicting sequences of limited Kolmogorov complexity.

4 Prediction of Simple Computable Sequences

As the computable prediction of any computable sequence is impossible, a weaker
goal is to be able to predict all “simple” computable sequences.

Definition 7. For n ∈ N, let Cn := {ω ∈ C : K(ω) ≤ n}. Further, let Pn :=
P (Cn) be the set of predictors able to learn to predict all sequences in Cn.

Firstly we establish that prediction algorithms exist that can learn to predict
all sequences up to a given complexity, and that these predictors need not be
significantly more complex than the sequences they can predict:

Lemma 5. ∀n ∈ N, ∃p ∈ Pn : K(p) <
+
n + O(log n).

Proof. Let h ∈ N be the number of programs of length n or less which generate
infinite sequences. Build the value of h into a prediction algorithm p constructed
as follows:

In the kth prediction cycle run in parallel all programs of length n or less until
h of these programs have each produced k + 1 symbols of output. Next predict
according to the k + 1th symbol of the generated string whose first k symbols is
consistent with the observed string. If two generated strings are consistent with
the observed sequence (there cannot be more than two as the strings are binary
and have length k + 1), pick the one which was generated by the program that

280 S. Legg

occurs first in a lexicographical ordering of the programs. If no generated output
is consistent, give up and output a fixed symbol.

For sufficiently large k, only the h programs which produce infinite sequences
will produce output strings of length k. As this set of sequences is finite, they
can be uniquely identified by finite initial strings. Thus for sufficiently large
k the predictor p will correctly predict any computable sequence ω for which
K(ω) ≤ n, that is, p ∈ Pn.

As there are 2n+1 − 1 possible strings of length n or less, h < 2n+1 and thus
we can encode h with log2 h + 2 log2 log2 h = n + 1 + 2 log2(n + 1) bits. Thus,
K(p) < n+1+2 log2(n+1)+c for some constant c that is independent of n. ��

Can we do better than this? Lemmas 2 and 3 shows us that there exist predictors
able to predict at least some sequences vastly more complex than themselves.
This suggests that there might exist simple predictors able to predict arbitrary
sequences up to a high complexity. Formally, could there exist p ∈ Pn where
n4 K(p)? Unfortunately, these simple but powerful predictors are not possible:

Theorem 1. ∀n ∈ N : p ∈ Pn ⇒ K(p) >
+
n.

Proof. For any n ∈ N let p ∈ Pn, that is, ∀ω ∈ Cn : p ∈ P (ω). By Lemma 4 we
know that ∃ω′ ∈ C : p /∈ P (ω′) . As p /∈ P (ω′) it must be the case that ω′ /∈ Cn,
that is, K(ω′) ≥ n. From Lemma 4 we also know that K(p) >

+
K(ω′) and so the

result follows. ��

Intuitively the reason for this is as follows: Lemma 4 guarantees that every simple
predictor fails for at least one simple sequence. Thus if we want a predictor that
can learn to predict all sequences up to a moderate level of complexity, then
clearly the predictor cannot be simple. Likewise, if we want a predictor that
can predict all sequences up to a high level of complexity, then the predictor
itself must be very complex. Thus, even though we have made the generous
assumption of unlimited computational resources and data to learn from, only
very complex algorithms can be truly powerful predictors.

These results easily generalise to notions of complexity that take computation
time into consideration. As sequences are infinite, the appropriate measure of
time is the time needed to generate or predict the next symbol in the sequence.
Under any reasonable measure of time complexity, the operation of inverting a
single output from a binary valued function can be performed with little cost.
If C is any complexity measure with this property, it is trivial to see that the
proof of Lemma 4 still holds for C. From this, an analogue of Theorem 1 for C
easily follows.

With similar arguments these results also generalise in a straightforward way
to complexity measures that take space or other computational resources into
account. Thus, the fact that extremely powerful predictors must be very com-
plex, holds under any measure of complexity for which inverting a single bit is
inexpensive.

Is There an Elegant Universal Theory of Prediction? 281

5 Complexity of Prediction

Another way of viewing these results is in terms of an alternate notion of sequence
complexity defined as the size of the smallest predictor able to learn to predict
the sequence. This allows us to express the results of the previous sections more
concisely. Formally, for any sequence ω define the complexity measure,

K̇(ω) := min
p∈B∗

{|p| : p ∈ P (ω)},

and K̇(ω) := ∞ if P (ω) = ∅. Thus, if K̇(ω) is high then the sequence ω is
complex in the sense that only complex prediction algorithms are able to learn
to predict it. It can easily be seen that this notion of complexity has the same
invariance to the choice of reference universal Turing machine as the standard
Kolmogorov complexity measure.

It may be tempting to conjecture that this definition simply describes what
might be called the “tail complexity” of a sequence, that is, K̇(ω) is equal to
lim infi→∞ K(ωi:∞). This is not the case. In the proof of Lemma 3 saw that
there exists a single predictor capable of learning to predict any sequence that
consists of a repeating string, and thus for these sequences K̇ is bounded.
It was further shown that there exist sequences of this form with arbitrarily
high tail complexity. Clearly then tail complexity and K̇ cannot be equal in
general.

Using K̇ we can now rewrite a number of our previous results much more
succinctly. From Lemma 1 it immediately follows that,

∀ω : 0 ≤ K̇(ω) <
+
K(ω).

From Lemma 2 we know that ∃c ∈ N, ∀n ∈ N, ∃ω ∈ C such that K̇(ω) < c
and K(ω) > n, that is, K̇ can attain the lower bound above within a small
constant, no matter how large the value of K is. The sequences for which the
upper bound on K̇ is tight are interesting as they are the ones which demand
complex predictors. We prove the existence of these sequences and look at some
of their properties in the next section.

The complexity measure K̇ can also be generalised to sets of sequences, for
S ⊂ B∞ define K̇(S) := minp{|p| : p ∈ P (S)}. This allows us to rewrite Lemma 5
and Theorem 1 as simply,

∀n ∈ N : n <
+
K̇(Cn) <

+
n + O(log n).

This is just a restatement of the fact that the simplest predictor capable of
predicting all sequences up to a Kolmogorov complexity of n, has itself a Kol-
mogorov complexity of roughly n.

Perhaps the most surprising thing about K̇ complexity is that this very nat-
ural definition of the complexity of a sequence, as viewed from the perspective
of prediction, does not appear to have been studied before.

282 S. Legg

6 Hard to Predict Sequences

We have already seen that some individual sequences, such as the repeating
string used in the proof of Lemma 3, can have arbitrarily high Kolmogorov com-
plexity but nevertheless can be predicted by trivial algorithms. Thus, although
these sequences contain a lot of information in the Kolmogorov sense, in a deeper
sense their structure is very simple and easily learnt.

What interests us in this section is the other extreme; individual sequences
which can only be predicted by complex predictors. As we are only concerned
with prediction in the limit, this extra complexity in the predictor must be some
kind of special information which cannot be learnt just through observing the
sequence. Our first task is to show that these difficult to predict sequences exist.

Theorem 2. ∀n ∈ N, ∃ω ∈ C : n <
+
K̇(ω) <

+
K(ω) <

+
n + O(log n).

Proof. For any n ∈ N, let Qn ⊂ B<n be the set of programs shorter than n that
are predictors, and let x1:k ∈ Bk be the observed initial string from the sequence
ω which is to be predicted. Now construct a meta-predictor p̂:

By dovetailing the computations, run in parallel every program of length
less than n on every string in B≤k. Each time a program is found to halt on
all of these input strings, add the program to a set of “candidate prediction
algorithms”, called Q̃k

n. As each element of Qn is a valid predictor, and thus
halts for all input strings in B∗ by definition, for every n and k it eventually
will be the case that |Q̃k

n| = |Qn|. At this point the simulation to approximate
Qn terminates. It is clear that for sufficiently large values of k all of the valid
predictors, and only the valid predictors, will halt with a single symbol of output
on all tested input strings. That is, ∃r ∈ N, ∀k > r : Q̃k

n = Qn.
The second part of the p̂ algorithm uses these candidate prediction algorithms

to make a prediction. For p ∈ Q̃k
n define dk(p) :=

∑k−1
i=1 |p(x1:i) − xi+1|. Infor-

mally, dk(p) is the number of prediction errors made by p so far. Compute this
for all p ∈ Q̃k

n and then let p∗k ∈ Q̃k
n be the program with minimal dk(p). If there

is more than one such program, break the tie by letting p∗k be the lexicograph-
ically first of these. Finally, p̂ computes the value of p∗k(x1:k) and then returns
this as its prediction and halts.

By Lemma 4, there exists ω′ ∈ C such that p̂ makes a prediction error for every
k when trying to predict ω′. Thus, in each cycle at least one of the finitely many
predictors with minimal dk makes a prediction error and so ∀p ∈ Qn : dk(p) →∞
as k → ∞. Therefore, �p ∈ Qn : p ∈ P (ω′), that is, no program of length less
than n can learn to predict ω′ and so n ≤ K̇(ω′). Further, from Lemma 1 we
know that K̇(ω′) <

+
K(ω′), and from Lemma 4 again, K(ω′) <

+
K(p̂).

Examining the algorithm for p̂, we see that it contains some fixed length
program code and an encoding of |Qn|, where |Qn| < 2n − 1. Thus, using a
standard encoding method for integers, K(p̂) <

+
n + O(log n).

Chaining these together we get, n <
+
K̇(ω′) <

+
K(ω′) <

+
K(p̂) <

+
n + O(log n),

which proves the theorem. ��

Is There an Elegant Universal Theory of Prediction? 283

This establishes the existence of sequences with arbitrarily high K̇ complexity
which also have a similar level of Kolmogorov complexity. Next we establish
a fundamental property of high K̇ complexity sequences: they are extremely
difficult to compute.

For an algorithm q that generates ω ∈ C, define tq(n) to be the number of
computation steps performed by q before the nth symbol of ω is written to the
output tape. For example, if q is a simple algorithm that outputs the sequence
010101 . . ., then clearly tq(n) = O(n) and so ω can be computed quickly. The
following theorem proves that if a sequence can be computed in a reasonable
amount of time, then the sequence must have a low K̇ complexity:

Lemma 6. ∀ω ∈ C, if ∃q : U(q) = ω and ∃r ∈ N, ∀n > r : tq(n) < 2n, then
K̇(ω) += 0.

Proof. Construct a prediction algorithm p̃ as follows:
On input x1:n, run all programs of length n or less, each for 2n+1 steps. In a
set Wn collect together all generated strings which are at least n + 1 symbols
long and where the first n symbols match the observed string x1:n. Now order
the strings in Wn according to a lexicographical ordering of their generating
programs. If Wn = ∅, then just return a prediction of 1 and halt. If |Wn| > 1
then return the n + 1th symbol from the first sequence in the above ordering.

Assume that ∃q : U(q) = ω such that ∃r ∈ N, ∀n > r : tq(n) < 2n. If q
is not unique, take q to be the lexicographically first of these. Clearly ∀n > r
the initial string from ω generated by q will be in the set Wn. As there is no
lexicographically lower program which can generate ω within the time constraint
tq(n) < 2n for all n > r, for sufficiently large n the predictor p̃ must converge on
using q for each prediction and thus p̃ ∈ P (ω). As |p̃| is clearly a fixed constant
that is independent of ω, it follows then that K̇(ω) < |p̃| += 0. ��

We could replace the 2n bound in the above result with any monotonically grow-
ing computable function, for example, 22n

. In any case, this does not change the
fundamental result that sequences which have a high K̇ complexity are prac-
tically impossible to compute. However from our theoretical perspective these
sequences present no problem as they can be predicted, albeit with immense
difficulty.

7 The Limits of Mathematical Analysis

One way to interpret the results of the previous sections is in terms of construc-
tive theories of prediction. Essentially, a constructive theory of prediction T ,
expressed in some sufficiently rich formal system F , is in effect a description of
a prediction algorithm with respect to a universal Turing machine which im-
plements the required parts of F . Thus from Theorems 1 and 2 it follows that
if we want to have a predictor that can learn to predict all sequences up to a
high level of Kolmogorov complexity, or even just predict individual sequences
which have high K̇ complexity, the constructive theory of prediction that we base

284 S. Legg

our predictor on must be very complex. Elegant and highly general constructive
theories of prediction simply do not exist, even if we assume unlimited compu-
tational resources. This is in marked contrast to Solomonoff’s highly elegant but
non-constructive theory of prediction.

Naturally, highly complex theories of prediction will be very difficult to math-
ematically analyse, if not practically impossible. Thus at some point the develop-
ment of very general prediction algorithms must become mainly an experimental
endeavour due to the difficulty of working with the required theory. Interestingly,
an even stronger result can be proven showing that beyond some point the math-
ematical analysis is in fact impossible, even in theory:

Theorem 3. In any consistent formal axiomatic system F that is sufficiently
rich to express statements of the form “p ∈ Pn”, there exists m ∈ N such that
for all n > m and for all predictors p ∈ Pn the true statement “p ∈ Pn” cannot
be proven in F .

In other words, even though we have proven that very powerful sequence pre-
diction algorithms exist, beyond a certain complexity it is impossible to find
any of these algorithms using mathematics. The proof has a similar structure
to Chaitin’s information theoretic proof [3] of Gödel incompleteness theorem for
formal axiomatic systems [6].

Proof. For each n ∈ N let Tn be the set of statements expressed in the formal
system F of the form “p ∈ Pn”, where p is filled in with the complete description
of some algorithm in each case. As the set of programs is denumerable, Tn is
also denumerable and each element of Tn has finite length. From Lemma 5 and
Theorem 1 it follows that each Tn contains infinitely many statements of the
form “p ∈ Pn” which are true.

Fix n and create a search algorithm s that enumerates all proofs in the formal
system F searching for a proof of a statement in the set Tn. As the set Tn is
recursive, s can always recognise a proof of a statement in Tn. If s finds any such
proof, it outputs the corresponding program p and then halts.

By way of contradiction, assume that s halts, that is, a proof of a theorem
in Tn is found and p such that p ∈ Pn is generated as output. The size of the
algorithm s is a constant (a description of the formal system F and some proof
enumeration code) as well as an O(log n) term needed to describe n. It follows
then that K(p) <

+
O(log n). However from Theorem 1 we know that K(p) >

+
n.

Thus, for sufficiently large n, we have a contradiction and so our assumption of
the existence of a proof must be false. That is, for sufficiently large n and for
all p ∈ Pn, the true statement “p ∈ Pn” cannot be proven within the formal
system F . ��

The exact value of m depends on our choice of formal system F and which refer-
ence machine U we measure complexity with respect to. However for reasonable
choices of F and U the value of m would be in the order of 1000. That is, the
bound m is certainly not so large as to be vacuous.

Is There an Elegant Universal Theory of Prediction? 285

8 Discussion

Solomonoff induction is an elegant and extremely general model of inductive
learning. It neatly brings together the philosophical principles of Occam’s razor,
Epicurus’ principle of multiple explanations, Bayes theorem and Turing’s model
of universal computation into a theoretical sequence predictor with astonishingly
powerful properties. If theoretical models of prediction can have such elegance
and power, one cannot help but wonder whether similarly beautiful and highly
general computable theories of prediction are also possible.

What we have shown here is that there does not exist an elegant constructive
theory of prediction for computable sequences, even if we assume unbounded
computational resources, unbounded data and learning time, and place mod-
erate bounds on the Kolmogorov complexity of the sequences to be predicted.
Very powerful computable predictors are therefore necessarily complex. We have
further shown that the source of this problem is computable sequences which are
extremely expensive to compute. While we have proven that very powerful pre-
diction algorithms which can learn to predict these sequences exist, we have also
proven that, unfortunately, mathematical analysis cannot be used to discover
these algorithms due to problems of Gödel incompleteness.

These results can be extended to more general settings, specifically to those
problems which are equivalent to, or depend on, sequence prediction. Con-
sider, for example, a reinforcement learning agent interacting with an envi-
ronment [15, 8]. In each interaction cycle the agent must choose its actions so
as to maximise the future rewards that it receives from the environment. Of
course the agent cannot know for certain whether or not some action will lead
to rewards in the future, thus it must predict these. Clearly, at the heart of
reinforcement learning lies a prediction problem, and so the results for com-
putable predictors presented in this paper also apply to computable reinforce-
ment learners. More specifically, from Theorem 1 it follows that very powerful
computable reinforcement learners are necessarily complex, and from Theo-
rem 3 it follows that it is impossible to discover extremely powerful reinforce-
ment learning algorithms mathematically. These relationships are illustrated in
Figure 1.

It is reasonable to ask whether the assumptions we have made in our model
need to be changed. If we increase the power of the predictors further, for example
by providing them with some kind of an oracle, this would make the predictors
even more unrealistic than they currently are. Clearly this goes against our goal
of finding an elegant, powerful and general prediction theory that is more realistic
in its assumptions than Solomonoff’s incomputable model. On the other hand, if
we weaken our assumptions about the predictors’ resources to make them more
realistic, we are in effect taking a subset of our current class of predictors. As
such, all the same limitations and problems will still apply, as well as some new
ones.

It seems then that the way forward is to further restrict the problem space.
One possibility would be to bound the amount of computation time needed

286 S. Legg

Fig. 1. Theorem 1 rules out simple but powerful artificial intelligence algorithms, as
indicated by the greyed out region on the lower right. Theorem 3 upper bounds how
complex an algorithm can be before it can no longer be proven to be a powerful
algorithm. This is indicated by the horizontal line separating the region of provable
algorithms from the region of Gödel incompleteness.

to generate the next symbol in the sequence. However if we do this without
restricting the predictors’ resources then the simple predictor from Lemma 6
easily learns to predict any such sequence and thus the problem of prediction in
the limit has become trivial. Another possibility might be to bound the memory
of the machine used to generate the sequence, however this makes the generator
a finite state machine and thus bounds its computation time, again making the
problem trivial.

Perhaps the only reasonable solution would be to add additional restrictions
to both the algorithms which generate the sequences to be predicted, and to the
predictors. We may also want to consider not just learnability in the limit, but
also how quickly the predictor is able to learn. Of course we are then facing a
much more difficult analysis problem.

Acknowledgements. I would like to thank Marcus Hutter, Alexey Chernov,
Daniil Ryabko and Laurent Orseau for useful discussions and advice during the
development of this paper.

Is There an Elegant Universal Theory of Prediction? 287

References

1. J. M. Barzdin. Prognostication of automata and functions. Information Processing,
71:81–84, 1972.

2. C. S. Calude. Information and Randomness. Springer, Berlin, 2nd edition, 2002.
3. G. J. Chaitin. Gödel’s theorem and information. International Journal of Theo-

retical Physics, 22:941–954, 1982.
4. A. P. Dawid. Comment on The impossibility of inductive inference. Journal of the

American Statistical Association, 80(390):340–341, 1985.
5. M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual se-

quences. IEEE Trans. on Information Theory, 38:1258–1270, 1992.
6. K. Gödel. Über formal unentscheidbare Sätze der principia mathematica und ver-

wandter systeme I. Monatshefte für Matematik und Physik, 38:173–198, 1931.
[English translation by E. Mendelsohn: “On undecidable propositions of formal
mathematical systems”. In M. Davis, editor, The undecidable, pages 39–71, New
York, 1965. Raven Press, Hewlitt].

7. E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

8. M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin, 2005. 300 pages,
http://www.idsia.ch/∼ marcus/ai/uaibook.htm.

9. M. Hutter. On the foundations of universal sequence prediction. In Proc.
3rd Annual Conference on Theory and Applications of Models of Computation
(TAMC’06), volume 3959 of LNCS, pages 408–420. Springer, 2006.

10. M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer, 2nd edition, 1997.

11. J. Poland and M. Hutter. Convergence of discrete MDL for sequential prediction.
In Proc. 17th Annual Conf. on Learning Theory (COLT’04), volume 3120 of LNAI,
pages 300–314, Banff, 2004. Springer, Berlin.

12. J. J. Rissanen. Fisher Information and Stochastic Complexity. IEEE Trans. on
Information Theory, 42(1):40–47, January 1996.

13. R. J. Solomonoff. A formal theory of inductive inference: Part 1 and 2. Inform.
Control, 7:1–22, 224–254, 1964.

14. R. J. Solomonoff. Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Trans. Information Theory, IT-24:422–432, 1978.

15. R. Sutton and A. Barto. Reinforcement learning: An introduction. Cambridge,
MA, MIT Press, 1998.

16. V. V. V’yugin. Non-stochastic infinite and finite sequences. Theoretical computer
science, 207:363–382, 1998.

17. C. S. Wallace and D. M. Boulton. An information measure for classification. Com-
puter Jrnl., 11(2):185–194, August 1968.

18. F.M.J. Willems, Y.M. Shtarkov, and Tj.J. Tjalkens. The context-tree weighting
method: Basic properties. IEEE Transactions on Information Theory, 41(3), 1995.

Learning Linearly Separable Languages

Leonid Kontorovich1, Corinna Cortes2, and Mehryar Mohri3,2

1 Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

2 Google Research,
1440 Broadway, New York, NY 10018

3 Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012

Abstract. This paper presents a novel paradigm for learning languages
that consists of mapping strings to an appropriate high-dimensional fea-
ture space and learning a separating hyperplane in that space. It initi-
ates the study of the linear separability of automata and languages by
examining the rich class of piecewise-testable languages. It introduces
a high-dimensional feature map and proves piecewise-testable languages
to be linearly separable in that space. The proof makes use of word
combinatorial results relating to subsequences. It also shows that the
positive definite kernel associated to this embedding can be computed in
quadratic time. It examines the use of support vector machines in com-
bination with this kernel to determine a separating hyperplane and the
corresponding learning guarantees. It also proves that all languages lin-
early separable under a regular finite cover embedding, a generalization
of the embedding we used, are regular.

1 Motivation

The problem of learning regular languages, or, equivalently, finite automata, has
been extensively studied over the last few decades.

Finding the smallest automaton consistent with a set of accepted and re-
jected strings was shown to be NP-complete by Angluin [1] and Gold [12]. Pitt
and Warmuth [21] further strengthened these results by showing that even an ap-
proximation within a polynomial function of the size of the smallest automaton
is NP-hard. These results imply the computational intractability of the general
problem of passively learning finite automata within many learning models, in-
cluding the mistake bound model of Haussler et al. [14] or the PAC-learning
model of Valiant [16]. This last negative result can also be directly derived from
the fact that the VC-dimension of finite automata is infinite.

On the positive side, Trakhtenbrot and Barzdin [24] showed that the smallest
finite automaton consistent with the input data can be learned exactly provided
that a uniform complete sample is provided, whose size is exponential in that of
the automaton. The worst case complexity of their algorithm is exponential but
a better average-case complexity can be obtained assuming that the topology
and the labeling are selected randomly [24] or even that the topology is selected
adversarially [9].

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 288–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Linearly Separable Languages 289

The model of identification in the limit of automata was introduced and dis-
cussed by Gold [11]. Deterministic finite automata were shown not to be iden-
tifiable in the limit from positive examples [11]. But positive results were given
for the identification in the limit of the families of k-reversible languages [2]
and subsequential transducers [20]. Some restricted classes of probabilistic au-
tomata such as acyclic probabilistic automata were also shown by Ron et al. to
be efficiently learnable [22].

There is a wide literature dealing with the problem of learning automata
and we cannot survey all these results in such a short space. Let us mention
however that the algorithms suggested for learning automata are typically based
on a state-merging idea. An initial automaton or prefix tree accepting the sample
strings is first created. Then, starting with the trivial partition with one state per
equivalence class, classes are merged while preserving an invariant congruence
property. The automaton learned is obtained by merging states according to the
resulting classes. Thus, the choice of the congruence determines the algorithm.

This work departs from this established paradigm in that it does not use the
state-merging technique. Instead, it initiates the study of the linear separation of
automata or languages by mapping strings to an appropriate high-dimensional
feature space and learning a separating hyperplane, starting with the rich class
of piecewise-testable languages.

Piecewise-testable languages form a non-trivial family of regular languages.
They have been extensively studied in formal language theory [18] starting with
the work of Imre Simon [23]. A language L is said to be n-piecewise-testable,
n ∈ N, if whenever u and v have the same subsequences of length at most n and
u is in L, then v is also in L. A language L is said to be piecewise testable if it
is n-piecewise-testable for some n ∈ N.

For a fixed n, n-piecewise-testable languages were shown to be identifiable in
the limit by Garćıa and Ruiz [10]. The class of n-piecewise-testable languages is
finite and thus has finite VC-dimension. To the best of our knowledge, there has
been no learning result related to the full class of piecewise-testable languages.

This paper introduces an embedding of all strings in a high-dimensional fea-
ture space and proves that piecewise-testable languages are finitely linearly sep-
arable in that space, that is linearly separable with a finite-dimensional weight
vector. The proof is non-trivial and makes use of deep word combinatorial results
relating to subsequences. It also shows that the positive definite kernel associ-
ated to this embedding can be computed in quadratic time. Thus, the use of
support vector machines in combination with this kernel and the correspond-
ing learning guarantees are examined. Since the VC-dimension of the class of
piecewise-testable languages is infinite, it is not PAC-learnable and we cannot
hope to derive PAC-style bounds for this learning scheme. But, the finite linear
separability of piecewise-testable helps us derive weaker bounds based on the
concept of the margin.

The linear separability proof is strong in the sense that the dimension of the
weight vector associated with the separating hyperplane is finite. This is related
to the fact that a regular finite cover is used for the separability of piecewise

290 L. Kontorovich, C. Cortes, and M. Mohri

testable languages. This leads us to study the general problem of separability
with other finite regular covers. We prove that languages separated with such
regular finite covers are necessarily regular.

The paper is organized as follows. Section 2 introduces some preliminary def-
initions and notations related to strings, automata, and piecewise-testable lan-
guages. Section 3 presents the proof of the finite linear separability of piecewise-
testable languages using a subsequence feature mapping. The subsequence kernel
associated to this feature mapping is shown to be efficiently computable in Sec-
tion 4. Section 5 uses margin bounds to examine how the support vector machine
algorithm combined with the subsequence kernel can be used to learn piecewise-
testable languages. Section 6 examines the general problem of separability with
regular finite covers and shows that all languages separated using such covers
are regular.

2 Preliminaries

In all that follows, Σ represents a finite alphabet. The length of a string x ∈ Σ∗

over that alphabet is denoted by |x| and the complement of a subset L ⊆ Σ∗ by
L = Σ∗\L. For any string x ∈ Σ∗, we denote by x[i] the ith symbol of x, i ≤ |x|.
More generally, we denote by x[i : j], the substring of contiguous symbols of x
starting at x[i] and ending at x[j].

A string x is a subsequence of y ∈ Σ∗ if x can be derived from y by erasing
some of y’s characters. We will write x * y to indicate that x is a subsequence of
y. The relation * defines a partial order over Σ∗. For x ∈ Σn, the shuffle ideal
of x is defined as the set of all strings containing x as a subsequence:

X(x) = {u ∈ Σ∗ : x * u} = Σ∗x[1]Σ∗ . . .Σ∗x[n]Σ∗.

The definition of piecewise-testable languages was given in the previous section.
An equivalent definition is the following: a language is piecewise-testable (PT for
short) if it is a finite Boolean combination of shuffle ideals [23].

We will often use the subsequence feature mapping φ : Σ∗ → RN which asso-
ciates to x ∈ Σ∗ a vector φ(x) = (yu)u∈Σ∗ whose non-zero components corre-
spond to the subsequences of x and are all equal to one:1

yu =
{

1 if u * x,
0 otherwise. (1)

3 Linear Separability of Piecewise-Testable Languages

This section shows that any piecewise-testable language is finitely linearly sep-
arable for the subsequence feature mapping.

We will show that every piecewise-testable language is given by some decision
list of shuffle ideals (a rather special kind of Boolean function). This suffices to
1 Elements u ∈ Σ∗ can be used as indices since Σ∗ and N are isomorphic.

Learning Linearly Separable Languages 291

prove the finite linear separability of piecewise-testable languages since decision
lists are known to be linearly separable Boolean functions [3].

We will say that a string u ∈ Σ∗ is decisive for a language L ⊆ Σ∗, if
X(u) ⊆ L or X(u) ⊆ L. The string u is said to be positive-decisive for L when
X(u) ⊆ L (negative-decisive when X(u) ⊆ L). Note that when u is positive-
decisive (negative-decisive),

x ∈X(u)⇒ x ∈ L (resp. x ∈X(u)⇒ x �∈ L). (2)

Lemma 1 (Decisive strings). Let L ⊆ Σ∗ be a piecewise-testable language,
then there exists a decisive string u ∈ Σ∗ for L.

Proof. We will prove that this property (existence of a decisive string) holds
for shuffle ideals and that it is preserved under the Boolean operations (nega-
tion, intersection, union). This will imply that it holds for all finite Boolean
combinations of shuffle ideals, i.e., for all PT languages.

By definition, a shuffle ideal X(u) admits u as a decisive string. It is also
clear that if u is decisive for some PT language L, then u is also decisive for
L. Thus, the existence of a decisive string is preserved under negation. For the
remainder of the proof, L1 and L2 will denote two PT languages over Σ.

If u1 is positive-decisive for L1 and u2 is positive-decisive for L2, X(u1) ∩
X(u2) ⊆ L = L1∩L2. X(u1)∩X(u2) is not empty since it contains, for example,
u1u2. For any string u ∈ X(u1) ∩X(u2), X(u) ⊆ X(u1) ∩X(u2), thus any
such u is positive-decisive for L. Similarly, when u1 is negative-decisive for L1
and u2 negative-decisive for L2 any u ∈X(u1) ∪X(u2) is negative-decisive for
L = L1∩L2. Finally, if u1 is positive-decisive for L1 and u2 negative-decisive for
L2 then any u ∈ X(u2) is negative-decisive for L = L1 ∩ L2 ⊆ L1. This shows
that the existence of a decisive string is preserved under intersection.

The existence of a decisive string is also preserved under union. If u1 is
positive-decisive for L1 and u2 positive-decisive for L2, then any u ∈ X(u1) ∪
X(u2) is positive-decisive for L = L1 ∪ L2. Similarly, when u1 is negative-
decisive for L1 and u2 negative-decisive for L2, any u ∈ X(u1) ∩X(u2) �= ∅
is negative-decisive for L = L1 ∪ L2. Lastly, if u1 is positive-decisive for L1
and u2 is negative-decisive for L2 then any u ∈ X(u1) is positive-decisive for
L = L1 ∪ L2. ��

We say that u is minimally decisive for L if it admits no proper subsequence
v * u that is decisive for L.

Lemma 2 (Finiteness of the set of minimally-decisive strings). Let L ⊆
Σ∗ be a PT language and let D ⊆ Σ∗ be the set of all minimally decisive strings
for L, then D is a finite set.

Proof. Observe that D is a subsequence-free subset of Σ∗: no element of D is a
proper subsequence of another. Thus, the finiteness of D follows directly from
Theorem 1 below. ��

The following result, on which Lemma 2 is based, is a non-trivial theorem of word
combinatorics which was originally discovered, in different forms, by Higman [15]

292 L. Kontorovich, C. Cortes, and M. Mohri

in 1952 and Haines [13] in 1969. The interested reader could refer to [19, Theorem
2.6] for a modern presentation.

Theorem 1 ([13, 15]). Let Σ be a finite alphabet and L ⊆ Σ∗ a language
containing no two distinct strings x and y such that x * y. Then L is finite.

The definitions and the results just presented can be generalized to decisiveness
modulo a set V : we will say that a string u is decisive modulo some V ⊆ Σ∗

if V ∩X(u) ⊆ L or V ∩X(u) ⊆ L. As before, we will refer to the two cases
as positive- and negative-decisiveness modulo V and similarly define minimally
decisive strings modulo V . These definitions coincide with ordinary decisiveness
when V = Σ∗.

Lemma 3 (Finiteness of the set of minimally-decisive strings modulo
V). Let L, V ⊆ Σ∗ be two PT languages and let D ⊆ Σ∗ be the set of all
minimally decisive strings for L modulo V , then D is a non-empty finite set.

Proof. Lemma 1 on the existence of decisive strings can be generalized straight-
forwardly to the case of decisiveness modulo a PT language V : if L, V ⊆ Σ∗

are PT and V �= ∅, then there exists u ∈ V such that u is decisive modulo V
for L. Indeed, by Lemma 1, for any language of the form X(s) there exists a
decisive string u ∈ V ∩X(s). The generalization follows by replacing X(X)
with V ∩X(X) in the proof of Lemma 1.

Similarly, in view of Lemma 2, it is clear that there can only be finitely many
minimally decisive strings for L modulo V . ��

Theorem 2 (PT decision list). If L ⊆ Σ∗ is PT then L is equivalent to some
finite decision list Δ over shuffle ideals.

Proof. Consider the sequence of PT languages V1, V2, . . . defined according to
the following process:

– V1 = Σ∗.
– When Vi �= ∅, Vi+1 is constructed from Vi in the following way. Let Di ⊆ Vi be

the nonempty and finite set of minimally decisive strings u for L modulo Vi.
The strings in Di are either all positive-decisive modulo Vi or all negative-
decisive modulo Vi. Indeed, if u ∈ Di is positive-decisive and v ∈ Di is
negative-decisive then uv ∈X(u) ∩X(v), which generates a contradiction.
Define σi as σi = 1 when all strings of Di are positive-decisive, σi = 0 when
they are negative-decisive modulo Vi and define Vi+1 by:

Vi+1 = Vi \X(Di), (3)

with X(Di) =
⋃

u∈Di
X(u).

We show that this process terminates, that is VN+1 = ∅ for some N > 0. As-
sume the contrary. Then, the process generates an infinite sequence D1, D2,
Construct an infinite sequence X = (xn)n∈N by selecting a string xn ∈ Dn for
any n ∈ N. By construction, Dn+1 ⊆ X(Dn) for all n ∈ N, thus all strings

Learning Linearly Separable Languages 293

xn are necessarily distinct. Define a new sequence (yn)n∈N by: y1 = x1 and
yn+1 = xψ(n), where ψ : N → N is defined for all n ∈ N by:

ψ(n) =
{

min{k ∈ N : {y1, . . . , yn, xk} is subsequence-free}, if such a k exists,
∞ otherwise.

(4)
We cannot have ψ(n) �= ∞ for all n > 0 since the set Y = {y1, y2, . . .} would then
be (by construction) subsequence-free and infinite. Thus, ψ(n) = ∞ for some
n > 0. But then any xk, k ∈ N, is a subsequence of an element of {y1, . . . , yn}.
Since the set of subsequences of {y1, . . . , yn} is finite, this would imply that X
is finite and lead to a contradiction.

Thus, there exists an integer N > 0 such that VN+1 = ∅ and the process
described generates a finite sequence D = (D1, . . . , DN) of nonempty sets as
well as a sequence σ = (σi) ∈ {0, 1}N . Let Δ be the decision list

(X(D1), σ1), . . . , (X(DN), σN). (5)

Let Δn : Σ∗ → {0, 1}, n = 1, . . . , N , be the mapping defined for all x ∈ Σ∗ by:

∀x ∈ Σ∗, Δn(x) =
{
σn if x ∈X(Dn),
Δn+1(x) otherwise, (6)

with ΔN+1(x) = σN . It is straightforward to verify that Δn coincides with the
characteristic function of L over

⋃n
i=1 X(Di). This follows directly from the

definition of decisiveness. In particular, since

Vn =
n−1⋂
i=1

X(Di) (7)

and VN+1 = ∅,
N⋃

i=1

X(Di) = Σ∗, (8)

and Δ coincides with the characteristic function of L everywhere. ��
Using this result, we show that a PT language is linearly separable with a finite-
dimensional weight vector.

Corollary 1. For any PT language L, there exists a weight vector w ∈ RN with
finite support such that L = {x : sgn(〈w, φ(x)〉) > 0}, where φ is the subsequence
feature mapping.

Proof. Let L be a PT language. By Theorem 2, there exists a decision list
(X(D1), σ1), . . . , (X(DN), σN) equivalent to L where each Dn, n = 1, . . . , N , is
a finite set. We construct a weight vector w = (wu)u∈Σ∗ ∈ RN by starting with
w = 0 and modifying its coordinates as follows:

∀u ∈ Dn, wu =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+(|

∑
{v∈

⋃N
i=n+1 Di:wv<0}

wv|+ 1) if σi = 1,

−(|
∑

{v∈
⋃N

i=n+1 Di:wv>0}

wv|+ 1) otherwise,
(9)

294 L. Kontorovich, C. Cortes, and M. Mohri

in the order n = N,N − 1, . . . , 1. By construction, the decision list is equivalent
to {x : sgn(〈w, φ(x)〉) > 0}. Since each Dn, n = 1, . . . , N , is finite, the weight
vector w has only a finite number of non-zero coordinates. ��

The dimension of the feature space associated to φ is infinite, the next section
shows that the kernel associated to φ can be computed efficiently however.

4 Efficient Kernel Computation

The positive definite symmetric kernel K associated to the subsequence feature
mapping φ is defined by:

∀x, y ∈ Σ∗, K(x, y) = 〈φ(x), φ(y)〉 =
∑

u∈Σ∗
[[u * x]] [[u * y]], (10)

where [[P]] represents the 0-1 truth value of the predicate P . Thus, K(x, y) counts
the number of subsequences common to x and y, without multiplicity.

This subsequence kernel is closely related to but distinct from the one de-
fined by Lodhi et al. [17]. Indeed, the kernel of Lodhi et al. counts the num-
ber of occurrences of subsequences common to x and y. Thus, for example
K(abc, acbc) = 8, since the cardinal of the set of common subsequences of abc
and acbc, {ε, a, b, c, ab, ac, bc, abc}, is 8. But, the kernel of Lodhi et al. (without
penalty factor) would instead associate the value 9 to the pair (abc, acbc).

A string with n distinct symbols has at least 2n possible subsequences, so a
naive computation of K(x, y) based on the enumeration of the subsequences of
x and y is inefficient. We will show however that K(x, y) can be computed in
quadratic time, O(|Σ||x||y|), using a method suggested by Derryberry [8] which
turns out to be somewhat similar to that of Lodhi et al.

For any symbol a ∈ Σ and a string u ∈ Σ∗, define lasta(u) to be 0 if a does
not occur in u and the largest index i such that u[i] = a otherwise. For x, y ∈ Σ∗,
define K ′ by:

∀x, y ∈ Σ∗, K ′(x, y) =
∑

u∈Σ+

[[u * x]] [[u * y]]. (11)

Thus, K ′(x, y) is the number of nonempty subsequences without multiplicity
common to x and y. For any a ∈ Σ, define Ka by:

∀x, y ∈ Σ∗, Ka(x, y) =
∑

u∈Σ∗a

[[u * x]] [[u * y]] (12)

be the number of such subsequences ending in a. Then, by definition of K ′,

∀x, y ∈ Σ∗, K ′(x, y) =
∑
a∈Σ

Ka(x, y). (13)

By definition, if a does not appear in x and or y, then Ka(x, y) = 0. Otherwise,
let ua be a common subsequence of x and y with u �= ∅, then u is a non-empty
subsequence of x and y. Thus,

Learning Linearly Separable Languages 295

Ka(x, y) =
{

0 if lasta(x) = 0 or lasta(y) = 0
1 + K ′(x[1 : lasta(x)− 1], y[1 : lasta(y)− 1]) otherwise, (14)

where the addition of 1 in the last equation accounts for the common subse-
quence ua = a with u = ε which is not computed by K ′. The subsequence kernel
K, which does count the empty string ε as a common subsequence, is given by
K(x, y) = K ′(x, y) + 1. A straightforward recursive algorithm based on Equa-
tion 14 can be used to compute K in time O(|Σ′||x||y|), where Σ′ ⊆ Σ is the
alphabet reduced to the symbols appearing in x and y.

The kernel of Lodhi et al. [17] was shown to be a specific instance of a ra-
tional kernel over the (+,×) semiring [6]. Similarly, it can be shown that the
subsequence kernel just examined is related to rational kernels over the (+,×)
semiring.

5 Learning Linearly Separable Languages

This section deals with the problem of learning PT languages. In previous sec-
tions, we showed that using the subsequence feature mapping φ, or equivalently a
subsequence kernel K that can be computed efficiently, PT languages are finitely
linearly separable.

These results suggest the use of a linear separation learning technique such
as support vector machines (SVM) combined with the subsequence kernel K
for learning PT languages [5, 7, 25]. In view of the estimate of the complexity
of the subsequence kernel computation presented in the previous section, the
complexity of the algorithm for a sample of size m where xmax is the longest
string is in O(QP(m)) + m2 |xmax|2 |Σ|), where QP(m) is the cost of solving a
quadratic programming problem of size m, which is at most O(m3).

We will use the standard margin bound to analyze the behavior of that algo-
rithm. Note however that since the VC-dimension of the set of PT languages is
infinite, PAC-learning is not possible and we need to resort to a weaker guarantee.

Let (x1, y1), . . . , (xm, ym) ∈ X×{−1,+1} be a sample extracted from a set X
(X = Σ∗ when learning languages). The margin ρ of a hyperplane with weight
vector w ∈ RN over this sample is defined by:

ρ = inf
i=1,...,m

yi 〈w, φ(xi)〉
‖w‖ .

The sample is linearly separated by w iff ρ > 0. Note that our definition holds
even for infinite-size samples.

The linear separation result shown for the class of PT languages is in fact
strong. Indeed, for any weight vector w ∈ RN, let supp(w) = {i : wi �= 0} denote
the support of w, then the following property holds for PT languages.

Definition 1. Let C be a concept class defined over a set X. We will say that a
concept c ∈ C is finitely linearly separable, if there exists a mapping φ : X →
{0, 1}N and a weight vector w∈RN with finite support, | supp(w)|<∞, such that

c = {x ∈ X : 〈w, φ(x)〉 > 0}. (15)

296 L. Kontorovich, C. Cortes, and M. Mohri

The concept class C is said to be finitely linearly separable if all c ∈ C are
finitely linearly separable for the same mapping φ.

Note that in general a linear separation in an infinite-dimensional space does not
guarantee a strictly positive margin ρ. Points in an infinite-dimensional space
may be arbitrarily close to the separating hyperplane and their infimum dis-
tance could be zero. However, finitely linear separation does guarantee a strictly
positive margin.

Proposition 1. Let C be a class of concepts defined over a set X that is finitely
linearly separable using the mapping φ : X → {0, 1}N and a weight vector w ∈
RN. Then, the margin ρ of the hyperplane defined by w is strictly positive, ρ > 0.

Proof. By assumption, the support of w is finite. For any x ∈ X , let φ′(x)
be the projection of φ(x) on the span of w, span(w). Thus, φ′(x) is a finite-
dimensional vector for any x ∈ X with discrete coordinates in {0, 1}. Thus, the
set of S = {φ′(x) : x ∈ X} is finite. Since for any x ∈ X , 〈w, φ(x)〉 = 〈w, φ′(x)〉,
the margin is defined over a finite set:

ρ = inf
x∈X

yx 〈w, φ′(x)〉
‖w‖ = min

z∈S

yx 〈w, z〉
‖w‖ > 0, (16)

and is thus strictly positive. ��
The following general margin bound holds for all classifiers consistent with the
training data [4].

Theorem 3 (Margin bound). Define the class F of real-valued functions on
the ball of radius R in Rn as

F = {x �→ 〈w, x〉 : ‖w‖ ≤ 1, ‖x‖ ≤ R}. (17)

There is a constant α0 such that, for all distributions D over X, with probability
at least 1−δ over m independently generated examples, if a classifier sgn(f), with
f ∈ F , has margin at least ρ on the training examples, then the generalization
error of sgn(f) is no more than

α0

m

(
R2

ρ2 log2 m + log(
1
δ
)
)
. (18)

Note that the notion of linear separability with a finite sample may be weak. Any
sample of size m can be trivially made linearly separable by using an embedding
φ : X → {0, 1}N mapping each point x to a distinct dimension. However, the
support of the weight vector increases with the size of the sample and is not
bounded. Also, the margin ρ for such a mapping is 1

2
√

m
and thus goes to zero

as m increases, and the ratio (R/ρ)2, where R = 1 is the radius of the sphere
containing the sample points, is (R/ρ)2 = 4m. Thus, such trivial linear sepa-
rations do not guarantee convergence. The bound of Theorem 3 is not effective
with that value of (R/ρ)2.

But, the result of the previous sections guarantee linear separability for sam-
ples of infinite size with strictly positive margin.

Learning Linearly Separable Languages 297

Theorem 4. Let C be a finitely linearly separable concept class over X with a
feature mapping φ : X → {0, 1}N. Define the class F of real-valued functions on
the ball of radius R in Rn as

F = {x �→ 〈w, φ(x)〉 : ‖w‖ ≤ 1, ‖φ(x)‖ ≤ R}. (19)

There is a constant α0 such that, for all distributions D over X, for any concept
c ∈ C, there exists ρ0 > 0 such that with probability at least 1 − δ over m
independently generated examples according to D, there exists a classifier sgn(f),
with f ∈ F , with margin at least ρ0 on the training examples, and generalization
error no more than

α0

m

(
R2

ρ2
0

log2 m + log(
1
δ
)
)
. (20)

Proof. Fix a concept c ∈ C. By assumption, c is finitely linearly separable by
some hyperplane. By Proposition 1, the corresponding margin ρ0 is strictly pos-
itive, ρ0 > 0. ρ0 is less than or equal to the margin of the optimal hyperplane ρ
separating c from X \ c based on the m examples.

Since the full sample X is linearly separable, so is any subsample of size m.
Let f ∈ F be the linear function corresponding to the optimal hyperplane over
a sample of size m drawn according to D. Then, the margin of f is at least as
large as ρ since not all points of X are used to define f . Thus, the margin of f
is greater than or equal to ρ0 and the statement follows Theorem 3. ��

Theorem 4 applies directly to the case of PT languages. Observe that in the
statement of the theorem, ρ0 depends on the particular concept c learned but
does not depend on the sample size m.

Note that the linear separating hyperplane with finite-support weight vector is
not necessarily an optimal hyperplane. The following proposition shows however
that when the mapping φ is surjective the optimal hyperplane has the same
property.

Proposition 2. Let c ∈ C be a finitely linearly separable concept with the feature
mapping φ : X → {0, 1}N and weight vector w with finite support, | supp(w)| <
∞, such that φ(X) = RN. Assume that φ is surjective, then the weight vector
ŵ corresponding to the optimal hyperplane for c has also a finite support and
supp(ŵ) ⊆ supp(w).

Proof. Assume that ŵi �= 0 for some i �∈ supp(w). We first show that this implies
the existence of two points x− �∈ c and x+ ∈ c such that φ(x−) and φ(x+) differ
only by their ith coordinate.

Let φ′ be the mapping such that for all x ∈ X , φ′(x) differs from φ(x) only
by the ith coordinate and let ŵ′ be the vector derived from ŵ by setting the
ith coordinate to zero. Since φ is surjective, thus φ−1(φ′(x)) �= ∅. If x and any
x′ ∈ φ−1(φ′(x)) are in the same class for all x ∈ X , then

sgn(〈ŵ, φ(x)〉) = sgn(〈ŵ, φ′(x)〉). (21)

298 L. Kontorovich, C. Cortes, and M. Mohri

Fix x ∈ X . Assume for example that [φ′(x)]i = 0 and [φ(x)]i = 1, then
〈ŵ, φ′(x)〉 = 〈ŵ′, φ(x)〉. Thus, in view of Equation 21,

sgn(〈ŵ, φ(x)〉) = sgn(〈ŵ, φ′(x)〉) = sgn(〈ŵ′, φ(x)〉). (22)

We obtain similarly that sgn(〈ŵ, φ(x)〉) = sgn(〈ŵ′, φ(x)〉) when [φ′(x)]i = 1 and
[φ(x)]i = 0. Thus, for all x ∈ X , sgn(〈ŵ, φ(x)〉) = sgn(〈ŵ′, φ(x)〉). This leads to
a contradiction, since the norm of the weight vector for the optimal hyperplane
is the smallest among all weight vectors of separating hyperplanes.

This proves the existence of the x− �∈ c and x+ ∈ c with φ(x−) and φ(x+)
differing only by their ith coordinate.

But, since i �∈ supp(w), for two such points x− �∈ c and x+ ∈ c, 〈w, φ(x−)〉 =
〈w, φ(x+)〉. This contradicts the status of sgn(〈w, φ(x)〉) as a linear separator.
Thus, our original hypothesis cannot hold: there exists no i �∈ supp(w) such that
ŵi �= 0 and the support of ŵ is included in that of w. ��

In the following, we will give another analysis of the generalization error of SVMs
for finitely separable hyperplanes using the following bound of Vapnik based on
the number of essential support vectors:

E[error(hm)] ≤
E[(Rm+1

ρm+1
)2]

m + 1
, (23)

where hm is the optimal hyperplane hypothesis based on a sample of m points,
error(hm) the generalization error of that hypothesis, Rm+1 the smallest radius
of a set of essential support vectors of an optimal hyperplane defined over a set
of m + 1 points, and ρm+1 its margin.

Let c be a finitely separable concept. When the mapping φ is surjective, by
Proposition 2, the weight vector ŵ of the optimal separating hyperplane for c
has finite support and the margin ρ0 is positive ρ0 > 0. Thus, the smallest
radius of a set of essential support vectors for that hyperplane is R =

√
N(c)

where N(c) = | supp(ŵ)|. If Rm+1 tends to R when m tends to infinity, then
for all ε > 0, there exists Mε such that for m > Mε, R2(m) ≤ N(c) + ε. In
view of Equation 23 the expectation of the generalization error of the optimal
hyperplane based on a sample of size m is bounded by

E[error(hm)] ≤
E[(Rm+1

ρm+1
)2]

m + 1
≤ N(c) + ε

ρ2
0(m + 1)

. (24)

This upper bound varies as 1
m .

6 Finite Cover with Regular Languages

In previous sections, we introduced a feature mapping φ, the subsequence map-
ping, for which PT languages are finitely linearly separable. The subsequence
mapping can be defined in terms of the set of shuffle ideals of all strings,

Learning Linearly Separable Languages 299

Uu = X(u), u ∈ Σ∗. A string x can belong only to a finite number of shuf-
fle ideals Uu, which determine the non-zero coordinates of φ(x). This leads us to
consider other such mappings based on other regular sets Uu and investigate the
properties of languages linearly separated for such mappings. The main result
of this section is that all such linearly separated languages are regular.

6.1 Definitions

Let Un ⊆ Σ∗, n ∈ N, be a countable family of sets, such any string x ∈ Σ∗ lies
in at least one and at most finitely many Un. Thus, for all x ∈ Σ∗,

1 ≤
∑

n

ψn(x) <∞,

where ψn is the characteristic function of Un:

ψn(x) =
{

1 if x ∈ Un

0 otherwise.

Any such family (Un)n∈N is called a finite cover of Σ∗. If additionally, each Un

is a regular set and Σ∗ is a member of the family, we will say that (Un)n∈N is a
regular finite cover (RFC).

Any finite cover (Un)n∈N naturally defines a positive definite symmetric kernel
K over Σ∗ given by:

∀x, y ∈ Σ∗, K(x, y) =
∑

n

ψn(x)ψn(y).

Its finiteness, symmetry, and positive definiteness follow its construction as a dot
product. K(x, y) counts the number of common sets Un that x and y belong to.

We may view ψ(x) as an infinite-dimensional vector in the space RN, in which
case we can write K(x, y) = 〈ψ(x), ψ(y)〉. We will say that ψ is an RFC-induced
embedding. Any weight vector w ∈ RN defines a language L(w) given by:

L(w) = {x ∈ Σ∗ : 〈w,ψ(x)〉 > 0}.

Note that since Σ∗ is a member of every RFC, K(x, y) ≥ 1.

6.2 Main Result

The main result of this section is that any finitely linearly separable language
under an RFC embedding is regular. The converse is clearly false. For a given
RFC, not all regular languages can be defined by some separating hyperplane.
A simple counterexample is provided with the RFC {∅, U,Σ∗ \ U,Σ∗} where U
is some regular language. For this RFC, U , its complement, Σ∗, and the empty
set are linearly separable but no other regular language is.

Theorem 5. Let ψ : Σ∗ → {0, 1}N be an RFC-induced embedding and let w ∈
RN be a finitely supported weight vector. Then, the language L(w) = {x ∈ Σ∗ :
〈w,ψ(x)〉 > 0} is regular.

300 L. Kontorovich, C. Cortes, and M. Mohri

Proof. Let f : Σ∗ → R be the function defined by:

f(x) = 〈w,ψ(x)〉 =
N∑

i=1

wiψi(x), (25)

where the weights wi ∈ R and the integer N = | supp(w)| are independent of x.
Observe that f can only take on finitely many real values {rk : k = 1, . . . ,K}.
Let Lrk

⊆ Σ∗ be defined by

Lrk
= f−1(rk). (26)

A subset I ⊆ {1, 2, . . . , N} is said to be rk-acceptable if
∑

i∈I wi = rk. Any such
rk-acceptable set corresponds to a set of strings LI ⊆ Σ∗ such that

LI =

(⋂
i∈I

ψ−1
i (1)

)
\

⎛⎝ ⋃
i∈{1,...,N}\I

ψ−1
i (1)

⎞⎠ =

(⋂
i∈I

Ui

)
\

⎛⎝ ⋃
i∈{1,...,N}\I

Ui

⎞⎠ .

Thus, LI is regular because each Ui is regular by definition of the RFC. Each
Lrk

is the union of finitely many rk-acceptable LI ’s, and L is the union of the
Lrk

for positive rk. ��

Theorem 5 provides a representation of regular languages in terms of some sub-
sets of RN. Although we present a construction for converting this represen-
tation to a more familiar one such as a finite automaton, our construction is
not necessarily efficient. Indeed, for some rk there may be exponentially many
rk-acceptable LIs. This underscores the specific feature of our method. Our ob-
jective is to learn regular languages efficiently using some representation, not
necessarily automata.

6.3 Representer Theorem

Let S = {xj : j = 1, . . . ,m} ⊆ Σ∗ be a finite set of strings and α ∈ Rm. The
pair (S, α) defines a language L(S, α) given by:

L(S, α) = {x ∈ Σ∗ :
m∑

j=1

αjK(x, xj) > 0}. (27)

Let w =
∑m

j=1 αjψ(xj). Since each ψ(xj) has only a finite number of non-zero
components, the support of w is finite and by Theorem 5, L(S, α) can be seen
to be regular. Conversely, the following result holds.

Theorem 6. Let ψ : Σ∗ → {0, 1}N be an RFC-induced embedding and let w ∈
RN be a finitely supported weight vector. Let L(w) be defined by L(w) = {x ∈
Σ∗ : 〈w,ψ(x)〉 > 0}. Then, there exist (xj), j = 1, . . . ,m, and α ∈ Rm such that
L(w) = L(S, α) = {x ∈ Σ∗ :

∑m
j=1 αjK(x, xj) > 0}.

Learning Linearly Separable Languages 301

Proof. Without loss of generality, we can assume that no cover set Un �= Σ∗, Un

is fully contained in a finite union of the other cover sets Un′ , Un′ �= Σ∗. Other-
wise, the corresponding feature component can be omitted for linear separation.
Now, for any Un �= Σ∗, let xn ∈ Un be a string that does not belong to any
finite union of Un′ , Un′ �= Σ∗. For Un = Σ∗, choose an arbitrary string xn ∈ Σ∗.
Then, by definition of the xn,

〈w,ψ(x)〉 =
m∑

j=1

wjK(x, xj). (28)

This proves the claim. ��

This result shows that any finitely linearly separable language can be inferred
from a finite sample.

6.4 Further Characterization

It is natural to ask what property of finitely supported hyperplanes is responsible
for their inducing regular languages. In fact, Theorem 5 is readily generalized:

Theorem 7. Let f : Σ∗ → R be a function such that there exist an integer
N ∈ N and a function g : {0, 1}N → R such that

∀x ∈ Σ∗, f(x) = g(ψ1(x), ψ2(x), . . . , ψN (x)), (29)

Thus, the value of f depends on a fixed finite number of components of ψ. Then,
for any r ∈ R, the language L = {x ∈ Σ∗ : f(x) = r} is regular.

Proof. Since f is a function of finitely many binary variables, its range is finite.
From here, the proof proceeds exactly as in the proof of Theorem 5, with identical
definitions for {rk} and Lrk

. ��

This leads to the following corollary.

Corollary 2. Let f : Σ∗ → R be a function satisfying the conditions of The-
orem 7. Then, for any r ∈ R, the languages L1 = {x ∈ Σ∗ : f(x) > r} and
L2 = {x ∈ Σ∗ : f(x) < r} are regular.

7 Conclusion

We introduced a new framework for learning languages that consists of mapping
strings to a high-dimensional feature space and seeking linear separation in that
space. We applied this technique to the non-trivial case of PT languages and
showed that this class of languages is indeed linearly separable and that the
corresponding subsequence kernel can be computed efficiently.

Many other classes of languages could be studied following the same ideas.
This could lead to new results related to the problem of learning families of
languages or classes of automata.

302 L. Kontorovich, C. Cortes, and M. Mohri

Acknowledgments

Much of the work by Leonid Kontorovich was done while visiting the Hebrew
University, in Jerusalem, Israel, in the summer of 2003. Many thanks to Yoram
Singer for providing hosting and guidance at the Hebrew University. Thanks
also to Daniel Neill and Martin Zinkevich for helpful discussions. This work was
supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. The research at CMU was
supported in part by NSF ITR grant IIS-0205456. This publication only reflects
the authors’ views. Mehryar Mohri’s work was partially funded by the New York
State Office of Science Technology and Academic Research (NYSTAR).

References

1. Dana Angluin. On the complexity of minimum inference of regular sets. Informa-
tion and Control, 3(39):337–350, 1978.

2. Dana Angluin. Inference of reversible languages. Journal of the ACM (JACM),
3(29):741–765, 1982.

3. Martin Anthony. Threshold Functions, Decision Lists, and the Representation
of Boolean Functions. Neurocolt Technical report Series NC-TR-96-028, Royal
Holloway, University of London, 1996.

4. Peter Bartlett and John Shawe-Taylor. Generalization performance of support
vector machines and other pattern classifiers. In Advances in kernel methods:
support vector learning, pages 43–54. MIT Press, Cambridge, MA, USA, 1999.

5. Bernhard E. Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop of
Computational Learning Theory, volume 5, pages 144–152, Pittsburg, 1992. ACM.

6. Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory
and Algorithms. Journal of Machine Learning Research (JMLR), 5:1035–1062,
2004.

7. Corinna Cortes and Vladimir N. Vapnik. Support-Vector Networks. Machine
Learning, 20(3):273–297, 1995.

8. Jonathan Derryberry, 2004. Private communication.
9. Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire,

and Linda Sellie. Efficient learning of typical finite automata from random walks.
In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 315–324, New York, NY, USA, 1993. ACM Press.

10. Pedro Garćıa and José Ruiz. Learning k-testable and k-piecewise testable languages
from positive data. Grammars, 7:125–140, 2004.

11. E. Mark Gold. Language identification in the limit. Information and Control,
50(10):447–474, 1967.

12. E. Mark Gold. Complexity of automaton identification from given data. Informa-
tion and Control, 3(37):302–420, 1978.

13. L. H. Haines. On free monoids partially ordered by embedding. Journal of Com-
binatorial Theory, 6:35–40, 1969.

14. David Haussler, Nick Littlestone, and Manfred K. Warmuth. Predicting {0, 1}-
Functions on Randomly Drawn Points. In Proceedings of the first annual workshop
on Computational learning theory (COLT 1988), pages 280–296, San Francisco,
CA, USA, 1988. Morgan Kaufmann Publishers Inc.

Learning Linearly Separable Languages 303

15. George Higman. Ordering by divisibility in abstract algebras. Proceedings of The
London Mathematical Society, 2:326–336, 1952.

16. Micheal Kearns and Umesh Vazirani. An Introduction to Computational Learning
Theory. The MIT Press, 1997.

17. Huma Lodhi, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text clas-
sification using string kernels. In Todd K. Leen, Thomas G. Dietterich, and Volker
Tresp, editors, NIPS 2000, pages 563–569. MIT Press, 2001.

18. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics
and Its Applications. Addison-Wesley, 1983.

19. Alexandru Mateescu and Arto Salomaa. Handbook of Formal Languages, Volume
1: Word, Language, Grammar, chapter Formal languages: an Introduction and a
Synopsis, pages 1–39. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

20. José Oncina, Pedro Garćıa, and Enrique Vidal. Learning subsequential transducers
for pattern recognition interpretation tasks. IEEE Trans. Pattern Anal. Mach.
Intell., 15(5):448–458, 1993.

21. Leonard Pitt and Manfred Warmuth. The minimum consistent DFA problem can-
not be approximated within any polynomial. Journal of the Assocation for Com-
puting Machinery, 40(1):95–142, 1993.

22. Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of
acyclic probabilistic finite automata. Journal of Computer and System Sciences,
56(2):133–152, 1998.

23. Imre Simon. Piecewise testable events. In Automata Theory and Formal Languages,
pages 214–222, 1975.

24. Boris A. Trakhtenbrot and Janis M. Barzdin. Finite Automata: Behavior and
Synthesis, volume 1 of Fundamental Studies in Computer Science. North-Holland,
Amsterdam, 1973.

25. Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

Smooth Boosting Using an Information-Based
Criterion

Kohei Hatano

Department of Informatics, Kyushu University
hatano@i.kyushu-u.ac.jp

Abstract. Smooth boosting algorithms are variants of boosting meth-
ods which handle only smooth distributions on the data. They are proved
to be noise-tolerant and can be used in the “boosting by filtering” scheme,
which is suitable for learning over huge data. However, current smooth
boosting algorithms have rooms for improvements: Among non-smooth
boosting algorithms, real AdaBoost or InfoBoost, can perform more ef-
ficiently than typical boosting algorithms by using an information-based
criterion for choosing hypotheses. In this paper, we propose a new smooth
boosting algorithm with another information-based criterion based on
Gini index. we show that it inherits the advantages of two approaches,
smooth boosting and information-based approaches.

1 Introduction

In recent years, huge data have become available due to the development of
computers and the Internet. As size of such huge data can reach hundreds of
gigabytes in knowledge discovery and machine learning tasks, it is important
to make knowledge discovery or machine learning algorithms scalable. Sampling
is one of effective techniques to deal with large data. There are many results
on sampling techniques [23, 5] and applications to data mining tasks such as
decision tree learning [7], support vector machine [2], and boosting [5, 6].

Especially, boosting is simple and efficient learning method among machine
learning algorithms. The basic idea of boosting is to learn many slightly accu-
rate hypotheses (or weak hypotheses) with respect to different distributions over
the data, and to combine them into a highly accurate one. Originally, boosting
was invented under the boosting by filtering framework [21, 10] (or the filtering
framework), where the booster can sample examples randomly from the whole
instance space. On the other hand, in the boosting by subsampling framework
[21, 10] (or, the subsampling framework), the booster is given a bunch of exam-
ples in advance. Of course, the subsampling framework is more suitable when the
size of data is relatively small. But, for large data, there are two advantages of
the filtering framework over the subsampling framework. First, the space com-
plexity is reduced as the booster “filters” examples and accepts only necessary
ones (See, e.g., [10]). The second advantage is that the booster can automatically
determine the sufficient sample size. Note that it is not trivial to determine the

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 304–318, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Smooth Boosting Using an Information-Based Criterion 305

sufficient sample size a priori in the subsampling framework. So the boosting by
filtering framework seems to fit learning over huge data. However, early boost-
ing algorithms [21, 10] which work in the filtering framework were not practical,
because they were not “adaptive”, i.e., they need the prior knowledge on the
accuracy of weak hypotheses.

MadaBoost, a modification of AdaBoost [11], is the first adaptive boosting
algorithm which works in the filtering framework [6]. Combining with adaptive
sampling methods [5], MadaBoost is shown to be more efficient than AdaBoost
over huge data, while keeping the prediction accuracy. By its nature of updat-
ing scheme, MadaBoost is categorized as one of ”smooth” boosting algorithms
[12, 25, 14], where the name, smooth boosting, comes from the fact that these
boosting algorithms only deal with smooth distributions over data (In contrast,
for example, AdaBoost might construct exponentially skew distributions over
data). Smoothness of distributions enables boosting algorithms to sample data
efficiently. Also, smooth boosting algorithms have theoretical guarantees for noise
tolerance in the various noisy learning settings, such as statistical query model
[6] malicious noise model [25] and agnostic boosting [14].

However, there seems still room for improvements on smooth boosting. A
non-smooth boosting algorithm, InfoBoost [1] (which is a special form of real
AdaBoost [22]), performs more efficiently than other boosting algorithms in the
boosting by subsampling framework. More precisely, given hypotheses with er-
ror 1/2− γ/2, typical boosting algorithms take O((1/γ2) log(1/ε)) iterations to
learn a (1− ε)-accurate hypothesis. On the other hand, InfoBoost learns in from
O((1/γ) log(1/ε)) to O((1/γ2) log(1/ε)) iterations by taking advantage of the sit-
uation when weak hypotheses have low false positive error [15, 16]. So InfoBoost
can be more efficient at most by O(1/γ) times.

The main difference between InfoBoost and other boosting algorithms such
as AdaBoost or MadaBoost is the criterion for choosing weak hypotheses. Typ-
ical boosting algorithms are designed to choose hypotheses whose errors are
minimum with respect to given distributions. In contrast, InfoBoost uses an
information-based criterion to choose weak hypotheses. The criterion was previ-
ously proposed by Kearns and Mansour in the context of decision tree learning
[18], and also applied to boosting algorithms using branching programs [19, 26].
But, so far, no smooth algorithm has such the nice property of InfoBoost.

In this paper, we propose a new smooth boosting algorithm, GiniBoost, which
uses another information-based criterionbased onGini index [3]. GiniBoost learns
inO(1/εΔ) iterations, where we callΔ the “pseudo gain” of weak hypotheses (that
will be defined later). As Δ varies from γ2 to γ, our bound on iterations is poten-
tially smaller than the O(1/εγ2) bound which are achieved by previous smooth
boosting algorithms [6, 25]. Unfortunately though, we have not given such a re-
fined analysis as done for InfoBoost yet. Then, we propose an adaptive sampling
procedure to estimate pseudo gains and apply GiniBoost in the filtering frame-
work. Preliminary experiments show that GiniBoost improves MadaBoost in the
filtering framework over large data.

306 K. Hatano

2 Preliminaries

2.1 Learning Model

We adapt the PAC learning model [27]. Let X be an instance space and let Y =
{−1,+1} be a set of labels. We assume an unknown target function f : X → Y.
Further we assume that f is contained in a known class F of functions from X to
Y. Let D be an unknown distribution over X . The learner has an access to the
example oracle EX(f,D). When given a call from the learner, EX(f,D) returns
an example (x, f(x)) where each instance x is drawn randomly according to D.
Let H be a hypothesis space, or a set of functions from X to Y. We assume
that H ⊃ F . For any distribution D over X , error of hypothesis h ∈ H is
defined as errD(h) def= PrD{h(x) �= f(x)}. Let S be a sample, a set of examples
((x1, f(x1), . . . , (xm, f(xm))). For any sample S, training error of hypothesis
h ∈ H is defined as êrrS(h) def= |{(xi, f(xi) ∈ S | h(xi) �= f(xi)}|/|S|.

We say that learning algorithm A is a strong learner for F if and only if, for
any f ∈ F and any distribution D, given ε, δ (0 < ε, δ < 1), a hypothesis space
H, and access to the example oracle EX(f,D) as inputs, A outputs a hypothesis
h ∈ H such that errD(h) = PrD{h(x) �= f(x)} ≤ ε with probability at least 1−δ.
We also consider a weaker learner. Specifically, we say that learning algorithm
A is a weak leaner1 for F if and only if, for any f ∈ F , given a hypothesis space
H, and access to the example oracle EX(f,D) as inputs, A outputs a hypothesis
h ∈ H such that errD(h) ≤ 1/2 − γ/2 for a fixed γ (0 < γ < 1). Note that
errD(h) = 1/2− γ/2 if and only if r =

∑
x∈X f(x)h(x)D(x).

2.2 Boosting Approach

Schapire proved that the strong and weak learnability are equivalent to each
other for the first time [21]. Especially the technique to construct a strong
learner by using a weak learner is called “boosting”. Basic idea of boosting
is the following: First, the booster trains a weak learner with respect to dif-
ferent distributions D1, . . . , DT over the domain X , and gets different “weak”
hypotheses h1, . . . , hT such that errDt(ht) ≤ 1/2 − γt/2 for each t = 1, . . . , T .
Then the booster combines weak hypotheses h1, . . . , hT into a final hypotheses
hfinal satisfying errD(hfinal) ≤ ε.

In the subsampling framework, the booster calls EX(f,D) for a number
of times and obtains a sample S = ((x1, f(x1), . . . , (xm, f(xm))) in advance.
Then the booster constructs the final hypothesis hfinal with its training error
êrrS(hfinal) ≤ ε by training the weak learner over the given sample S. The error
errD(hfinal) can be estimated by using arguments on VC-dimension or margin
(E.g., see [11] or [20], respectively). For example, for typical boosting algorithms,

1 In the original definition of [21], the weak learning algorithm is allowed to output a
hypothesis h with errD(h) > 1/2 − γ/2 with probability at most δ as well. But in
our definition we omit δ to make our discussion simple. Of course, we can use the
original definition, while our analysis becomes slightly more complicated.

Smooth Boosting Using an Information-Based Criterion 307

errD(hfinal) ≤ êrrS(hfinal)+Õ(
√
T log |W|/m) 2 with high probability, where T

is the size of the final hypotheses, i.e., the number of weak hypotheses combined
in hfinal. So, assuming that |W| is finite, the sample and space complexity are
Õ(1/γ2ε2), respectively.

In the filtering framework, on the other hand, the booster deal with the whole
instance space X through EX(f,D). By using statistics obtained from calls to
EX(f,D), the booster tries to minimize errD(hfinal) directly. Then, it can be
shown that the sample complexity is Õ(1/γ4ε2), but the space complexity is
Õ(1/γ2) (in which the factor log(1/ε) is hidden) by using e.g., [6] and [5].

Smooth boosting algorithms generates only such distributions D1, . . . , Dt that
are “smooth” with respect to the original distribution D. We define the following
measure of smoothness.

Definition 1. Let D and D′ be any distributions over X . We say that D′ is
λ-smooth with respect to D if maxx∈X D′(x)/D(x) ≤ λ.

The smoothness parameter λ has crucial roles in robustness of boosting algo-
rithms [6, 25, 14]. Also, it affects the efficiency of sampling methods.

2.3 Our Assumption and Technical Goal

In the rest of the paper, we assume that the learner is given a finite set W of
hypotheses such that for any distribution D′ over X , there exists a hypothesis
h ∈ W satisfying errD′(h) ≤ 1/2−γ/2. Now our technical goal is to construct an
efficient smooth boosting algorithm which works in both the subsampling and
the filtering framework.

3 Boosting by Subsampling

In this section, we propose our boosting algorithm in the subsampling framework.

3.1 Derivation

First of all, we derive our algorithm. It is well known that many of boosting
algorithms can be viewed as greedy minimizers of loss functions [13]. More pre-
cisely, it can be viewed that they minimize particular loss functions that bound
the training errors. The derivation of our algorithm is also explained simply in
terms of its loss function.

Suppose that the learner is given a sample S = {(x1, f(x1), . . . , (xm, f(xm))},
a set W of hypotheses, and the current final hypothesis Ht(x) =

∑t
j=1 αjhj(x),

where each hj ∈ W and αj ∈ R for j = 1, . . . , t. The training error of Ht(x)
over S is defined by êrr(sign(Ht)) = 1

m

∑m
i=1 I(−f(xi)Ht(xi)), where I(a) = 1

if a > 1 and I(a) = 0, otherwise. We assume a function L : R → [0,+∞)
such that I(a) ≤ L(a) for any a ∈ R. Then, by definition, êrr(sign(Ht)) ≤
2 In the Õ(g(n)) notation, we neglect poly(log(n)) terms.

308 K. Hatano

1
m

∑m
i=1 L(−f(xi)Ht(xi)). If the function L is convex, the upperbound of the

training error have a global minimum. Given a new hypothesis h ∈ W, a typical
boosting algorithm assigns α to h that minimizes a particular loss function. For
example, AdaBoost solves the following minimization problem:

min
α∈R

1
m

m∑
i=1

Lexp(−f(xi){Ht(xi) + αh(xi)}),

where its loss function is given by exponential loss, Lexp(x) = ex. The solu-
tion is given analytically as α = 1

2 ln 1+γ
1−γ , where γ =

∑m
i=1 f(xi)h(xi)Dt(xi),

and Dt(xi) = exp(−f(xi)H(xi))∑m
i=1 exp(−f(xi)H(xi))

. InfoBoost is designed to minimize the same
loss function Lexp as AdaBoost, but it uses a slightly different form of the fi-
nal hypothesis Ht(x) =

∑r
j=1 αj(hj(x))hj(x), where αj(z) = αj [+1] if z ≥ 0,

αj(z) = αj [+1], otherwise (αj [±1] ∈ R). The main difference is that InfoBoost
assigns coefficients for each prediction +1 and −1 of a hypothesis. Then, the
minimization problem of InfoBoost is given as:

min
α[+1],α[−1]∈R

1
m

m∑
i=1

Lexp(−f(x){Ht(x) + α(h(x))h(x)}).

This problem also has the analytical solution: α[±1] = 1
2 ln 1+γ[±1]

1−γ[±1] , γ[±1] =∑
i:h(xi)=±1 f(xi)h(xi)Dt(xi)∑

i:h(xi)=±1 D(xi)
, and Dt(xi) = exp(−f(xi)Ht(xi))∑

m
i=1 exp(−f(xi)Ht(xi))

. Curiously, this

derivation makes InfoBoost choose a hypothesis that maximizes information
gain, where the entropy function is defined not by Shannon’s entropy func-
tion EShannon(p) = −p log p − (1 − p) log(1 − p), but by the entropy func-
tion EKM (p) = 2

√
p(1− p) proposed by Kearns and Mansour [18] (See [26]

for details). MadaBoost is formulated as the same minimization problem of Ad-
aBoost, except that its loss function is replaced with Lmada(x) = ex, if x ≤ 0,
Lmada(x) = x, otherwise.

Now combining the derivations of InfoBoost and MadaBoost in a straightfor-
ward way, our boosting algorithm is given by

min
α[+1],α[−1]∈R

1
m

m∑
i=1

Lmada(−f(xi){Ht(xi) + α(h(xi))h(xi)}). (1)

Since the solution cannot be obtained analytically, we minimize an upperbound
of (1). The way of our approximation is a modification of the technique used for
AdaFlat [14]. By using Taylor expansion (see Lemma 3 in Appendix for a proof)
we have Lmada(x + a) ≤ Lmada(a) + L′

mada(a)(x + x2).
Let

(x) = L′
mada(x) =

{
1, x ≥ 0
ex, x < 0.

Smooth Boosting Using an Information-Based Criterion 309

Then we get

1
m

m∑
i=1

Lmada(−f(xi)Ht(xi)) − 1
m

m∑
i=1

Lmada(−f(xi)Ht+1(xi))

≥ 1
m

m∑
i=1

{
f(xi)ht(xi)α[h(xi)]�(−f(xi)Ht(xi)) − α[h(xi)]2�(−f(xi)Ht(xi))

}
def= ΔLt(h).

By solving the equations ∂ΔLt(h)/∂αt[b] = 0 for b = ±1, we see that ΔLt(h)
is maximized if αt[b] = γt[b](h)/2, where

γt[b](h) =

∑
i:h(xi)=b h(xi)f(xi)Dt(xi)∑

i:h(xi)=b Dt(xi)
, and Dt(xi) =

(−f(xi)Ht(xi))∑m
i=1 (−f(xi)Ht(xi))

.

By substituting αt[b] = γt[b](h)/2 for b = ±1, we get

ΔLt(h) =
μt

4
{
pt(h)γt[+1](h)2 + (1 − pt(h))γt[−1](h)2

}
(2)

where μt =
∑m

i=1 �(−f(xi)Ht(xi))
m , and pt(h) = PrDt{h(xi) = +1}.

Our derivation implies a new criterion to choose a weak hypothesis. That is,
we choose h ∈ W that maximizes

Δt(h) = pt(h)γt[+1](h)2 + (1− pt(h))γt[−1](h)2.

We call the quantity pseudo gain of hypothesis h with respect to f and Dt. Now
we motivate the pseudo gain in the following way. Let εt[±1](h) = PrDt{f(xi) =
∓1|h(xi) = ±1}. Note that γt[±1](h) = 1− 2εt[±1](h). Then

1−Δt(h)

=pt(h){1− (1 − 2εt[+1](h))2}+ (1− pt){1− (1 − 2εt[−1](h))2}
=pt(h) · 4εt[+1](h)(1− εt[+1](h)) + (1− pt(h)) · 4εt[−1](h)(1− εt[−1](h)),

which can be interpreted as the conditional entropy of f given h with respect
to Dt, where the entropy is defined by Gini index EGini(p) = 4p(1− p) [3] (See
other entropy measures in Figure 1 for comparison). So, maximizing the pseudo
gain is equivalent to maximizing the information gain defined with Gini index.

3.2 Our Algorithm

Based on our derivation we propose GiniBoost. The description of our modifi-
cation is given in Figure 2. To make our notation simple, we denote pt(ht) = pt,
γt[±1](ht) = γt[±1], and Δt(ht) = Δt.

First, we show that the smoothness of distributions Dt.

Proposition 1. During the execution of GiniBoost, each distribution Dt (t ≥ 1)
is 1/ε-smooth with respect to D1, the uniform distribution over S.

310 K. Hatano

Fig. 1. Plots of three entropy functions, KM entropy (upper) EKM (p) = 2
√

p(1 − p),
Shannon’s entropy (middle) EShannon(p) = −p log p− (1−p) log(1−p), and Gini index
(lower) EGini(p) = 4p(1 − p)

Proof. Note that, during the while-loops, μt ≥ errS(hfinal) > ε. Therefore, for
any i, Dt(i)/D1(i) = (−f(xi)Ht(xi))/μt < 1/ε.

It is already shown that smoothness 1/ε is optimal, i.e., there is no boosting
algorithm that achieves the smoothness less than 1/ε [25, 14].

Next, we prove the time complexity of GiniBoost.

Theorem 2. Suppose that, during the while-loops, errDt(ht) ≤ 1/2 − γt/2 ≤
1/2−γ/2 for some γ > 0. Then, GiniBoost outputs a final hypothesis hfinal satis-
fying êrrS(hfinal) ≤ ε within T = O (1/εΔ) iterations, where Δ = mint=1,...,T Δt

and Δ ≥ γ2.

Proof. By our derivation of GiniBoost, for any T ≥ 1, the training error êrr(HT)
is less than 1−

∑T
t=1 ΔLt(ht). As in the proof of Proposition 1, μt ≥ ε. So we have

ΔLt(ht) ≥ εΔ/4 and thus êrrS(hfinal) ≤ ε if T = 4/εΔ. Finally, by Jensen’s
inequality, Δt ≥ ptγt[+1]2+(1−pt)γt[−1]2 ≥ γ2

t ≥ γ2, which proves Δ ≥ γ2.

Remark. We discuss the efficiency of other boosting algorithms and GiniBoost.
GiniBoost runs in O(1/εγ2) iterations in the worst case. But, since the pseudo
gain Δ ranges from γ2 to γ, our bound O(1/εΔ) is potentially smaller. Smooth
boosting algorithms MadaBoost [6] and SmoothBoost [25] run in O(1/εγ2) itera-
tions as well. However, the former needs a technical assumption in their analysis
that γt ≥ γt+1 for each iteration t. Also the latter is not adaptive, i.e., it needs
the prior knowledge of γ > 0. On the other hand, GiniBoost is adaptive and
does not need such the technical assumption. AdaFlat [14] is another smooth
boosting algorithm which is adaptive, but it takes O(1/ε2γ2) iterations. Finally,
AdaBoost [11] achieves O(log(1/ε)/γ2) bound and the bound is optimal [10]. But
AdaBoost might construct exponentially skew distributions. It is shown that a
combination of boosting algorithms (“boosting tandems approach” [9, 14]) can
achieve O(log(1/ε)/γ2) with smoothness Õ(1/ε). Yet, it is still open whether a
single adaptive boosting algorithm can learn in O(log(1/ε)/γ2) iterations while
keeping the optimal smoothness 1/ε.

Smooth Boosting Using an Information-Based Criterion 311

GiniBoost

Given: S = ((x1, f(x1)), ..., (xm, f(xm))), and ε (0 < ε < 1)
1. D1(i) ← 1/m; (i = 1, ..., m) H0(x) ← 0; t ← 1;
2. while êrrS(hfinal) > ε do

a) ht ← arg max
h∈W

Δt(h);

b) αt[±1] ← γt[±1]/2; Let αt(z) = αt[+1] if z > 0, o.w. let αt(z) = αt[−1];
c) Ht+1(x) ← Ht(x) + αt(ht(x))ht(x);
d) Define the next distribution Dt+1 as

Dt+1(i) =
�(−f(xi)Ht+1(xi))∑m

i=1 �(−f(xi)Ht+1(xi))
;

e) t ← t + 1;
end-while

3. Output the final hypothesis hfinal(x) = sign (Ht+1(x)) .

Fig. 2. GiniBoost

4 Boosting by Filtering

In this section, we propose GiniBoostfilt in the filtering framework. Let

Dt(x) =
D(x)(−f(x)Ht(x))∑

x∈X D(x)(−f(x)Ht(x))
.

We define μt =
∑

x∈X D(x)(−f(x)Ht(x)),. We denote â as the empirical esti-
mate of the parameter a given a sample St. The description of GiniBoostfilt is
given in Figure 3.

The following property of FiltEX can be immediately verified.

Proposition 3. Fix any iteration t, (i) FiltEX outputs (x, f(x)), where x is
drawn according to Dt, and (ii) the probability that FiltEX outputs an example
is at least μt ≥ errD(sign(Ht)).

Then, we prove a multiplicative tail bound on the estimate Δ̂t(h) of the pseudo
gain.

Lemma 1. Fix any t ≥ 1. Let Δ̂t(h) = p̂t(h)γ̂t[+1](h)2 + (1− p̂t(h))γ̂t[−1](h)2

be the empirical estimate of Δt(h) given St. Then it holds for any ε (0 < ε < 1)
that

Pr
Dm
{Δ̂t(h) ≥ (1 + ε)Δt(h)} ≤ b1e

− ε2Δtm
c1 , (3)

and

Pr
Dm
{Δ̂t(h) ≤ (1− ε)Δt(h)} ≤ b1e

− ε2Δtm
c2 , (4)

where b1 ≤ 8, c1 ≤ 600, and c2 ≤ 64.

312 K. Hatano

GiniBoostfilt(ε, δ,W)
1.Let H1(x) = 0; t ← 1; δ1 ← δ/8;

S′
1 ← 18 log(1/δ1)

ε
random examples drawn by EX(f, D);

2.while êrrS′
t
(sign(Ht)) ≥ 2ε

3 do
(ht, St) ← HSelect(1/2, δt);
(γ̂t[+1], γ̂t[−1]) ← empirical estimates over St;
αt[±1] ← γ̂t[±1]/2;
Ht+1(x) ← Ht(x) + αt(ht(x))ht(x);
t ← t + 1; δt ← δ/(4t(t + 1));
S′

t ← 18 log(1/δt)
ε

random examples drawn by EX(f, D);
end-while

3.Output the final hypothesis hfinal(x) = sign (Ht(x)) ;

FiltEX()
do

(x, f(x)) ← EX(f, D);
r ← uniform random number over [0, 1];
if r < �(−f(x)Ht(x)) then return (x, f(x));

end-do

HSelect(ε, δ)
m ← 0; S ← ∅; i ← 1; Δg ← 1/2; δ′ ← δ/(2|W|);
do
(x, f(x)) ← FiltEX();
S ← S ∪ (x, f(x)); m ← m + 1;

if m =
⌈

c1 ln b1
δ′

ε2Δg

⌉
then

Let Δ̂t(h) be the empirical estimate of Δt(h) over S for each h ∈ W;
if ∃h ∈ W, Δ̂t(h) ≥ Δg then return h and S;
else Δg ← Δg/2; i ← i + 1; δ ← δ/(i(i + 1)|W|);

end-if
end-do

Fig. 3. GiniBoostfilt

The proof of Lemma 1 is omitted and given in the technical report version of
our paper [17]. Then, we analyze our adaptive sampling procedure HSelect. Let
Δ∗

t = maxh′∈W Δt(h′). We prove the following lemma. The proof is also given
in [17] .

Lemma 2. Fix any t ≥ 1. Then, with probability at least 1−δ, (i) HSelect(ε, δ)
outputs a hypothesis h ∈ W such that Δt(h) > (1 − ε)Δ∗

t , and (ii) the number
of calls of EX(f,D) is

O

(
log 1

δ + log |W|+ log log 1
Δ∗

t

ε2Δ∗
t

)
.

Smooth Boosting Using an Information-Based Criterion 313

Finally we obtain the following theorem.

Theorem 4. With probability at least 1− δ,

(i) GiniBoostfilt outputs the final hypothesis hfinal such that errD(hfinal) ≤ ε,
(ii) GiniBoostfilt terminates in T = O (1/εΔ) iterations,
(iii) the number of calls of EX(f,D) is

O

(
log 1

δ + log 1
εΔ + log |W|+ log log 1

Δ

ε2Δ2 ·
(

log
1
δ

+ log
1
εΔ

))
, and

(iv) the space complexity is

O

(
log 1

δ + log 1
εΔ + log |W|+ log log 1

Δ

Δ

)
,

where Δt ≥ Δ ≥ γ2.

Proof. We say that GiniBoost fails at iteration t if one of the following event
occurs: (a) HSelect fails, i.e., it does not meet the conditions (i) or (ii) in
Lemma 2, (b) FiltEX calls EX(f,D) for more than (6/ε)Mt log(1/δt) times
at iteration t, where Mt is denoted as the number of calls for FiltEX, (c)
errD(sign(Ht)) > ε and êrrS′

t
(sign(Ht)) < 2ε/3, or (d) errD(sign(Ht)) < ε/2

and êrrS′
t
(sign(Ht)) > 2ε/3. Note that, by Proposition 3, Lemma 2 and an ap-

plication of Chernoff bound, the probability of each event (a), . . . , (d) is at most
δt, respectively. So the probability that GiniBoost fails is at most 4δt at each it-
eration t. Then, during T iterations, GiniBoost fails at some iteration is at most∑T

t=1 4δt = δ− δ/(T + 1) < δ. Now suppose that GiniBoost does not fail during
T iterations. Then, we have errD(hfinal) ≤ 1−

∑T
i=t(1/8)Δ∗

t by using the similar
argument in the proof of Theorem 2, and thus GiniBoost errD(hfinal) ≤ ε/2 in
T = 16/(εΔ) iterations. Then, since GiniBoost does not fail during T iterations,
êrrS′

t
(sign(Ht)) < 2ε/3 at iteration T + 1 and GiniBoost outputs hfinal with

errD(hfinal) ≤ ε/2 and terminates. The total number of calls of EX(f,D) in
T = O(1/εΔ) iterations is O(T ·MT (1/ε) log(1/δT)) with probability 1− δ and
by combining with Lemma 2, we complete the proof.

5 Improvement on Sampling

While Lemma 1 gives a theoretical guarantee without any assumption, the bound
has the constant factor c1 = 600, which is too large to apply the lemma in prac-
tice. In this section, we derive a practical tail bound on the pseudo gain by using
the central limit theorem. We say that a sequence of random variables {Xi} is
asymptotically normal with mean μi and variance σ2

i (we write Xi is AN(μi, σ
2
i)

for short) if (Xi−μi)/σi converges to N(0, 1) in distribution 3. The central limit
3 Let F1(x), . . . , Fm(x), and F (x) be distribution functions. Let X1, . . . , Xm, and X

be corresponding random variables, respectively. Xm converges to X in distribution
if limm→∞ Fm(x) = F (x).

314 K. Hatano

theorem states that, for independent random variables X1, . . . , Xm from the
same distribution with mean μ and variance σ2,

∑m
i=1 Xi/m is AN(μ, σ2/m).

In particular, we use the multivariate version of the central limit theorem.

Theorem 5 ([24]). Let X1, . . . ,Xm be i.i.d. random vectors with mean μ and
covariance matrix Σ. Then,

∑m
i=1 Xi/m is AN(μ,Σ).

Fix any hypothesis h ∈ W, and distribution Dt over X . Let X ∈ {0, 1} and
Y ∈ {−1,+1} be random variables, induced by an independent random draw
of x ∈ X under Dt, such that X = 1 if h(x) = +1, otherwise X = 0 and
Y = f(x)ht(x), respectively. Then the pseudo gain Δt(h) can be written as
E(X) · {E(XY)/E(X)}2 + E(X̄) · {E(X̄Y)/E(X̄)}2, where X̄ = 1 − X . Our
empirical estimate of the pseudo gain is Z = (

∑m
i=1 XiYi/m)2/(

∑m
i=1 Xi/m) +

(
∑m

i=1 X̄iYi/m)2/(
∑m

i=1 X̄i/m). The following theorem guarantees that a com-
bination of sequences of asymptotically normal random variables is also asymp-
totically normal (Theorem 3.3A in [24]).

Theorem 6 ([24]). Suppose that X = (X(1), . . . , X(k)) is AN(μ, bΣ), with Σ a
covariance matrix and b→ 0. Let g(x) = (g1(x), . . . , gn(x)), x = (x1, . . . , xk), be
a vector-valued function for which each component function gi(x) is real-valued
and has a nonzero differential at x = μ. Then, g(X) is AN(g(μ), b2DΣD′),
where

D =
[
∂gi

∂xj

∣∣∣
x=μ

]
n×k

.

By using Theorem 5 and 6 for Xm = (
∑m

i=1 Xi/m,
∑m

i=1 XiYi/m,
∑m

i=1 X̄iYi/m)
and g(u, v, w) = v2/u+ w2/(1− u), we get the following result.

Corollary 7. Z = (∑m
i=1 XiYi/m)2∑

m
i=1 Xi/m + (∑m

i=1 X̄iYi/m)2∑m
i=1 X̄i/m

is AN(μz, σ
2
z), where μz =

E(XY)2

E(X) + E(X̄Y)2

E(X̄) , and σ2
z ≤ 4μz/m.

The proof is given in [17]. When the given sample is large enough, we may be
able to use the central limit theorem. Then

Pr
{
Z − μz

σz
≤ ε

}
≈ Φ(ε),

where Φ(x) =
∫ x

−∞(1/
√

2π)e−
1
2 y2

dy. Since 1 − Φ(x) ≤ 1/(x
√

2π)e−
1
2 x2

(see,
e.g.,[8]),

Pr {Z − μz > εμz} = Pr
{
Z − μz

σz
>

εμz

σz

}
� σz

εμz

√
2π

e
− ε2μ2

z
2σ2

z

<
2√

2πε2μzm
e−

ε2μzm
8 . (5)

Smooth Boosting Using an Information-Based Criterion 315

Substituting

m =
8
(
ln 1

δ
√

2π
− 1

2 ln ln 1
δ
√

2π

)
ε2μz

to inequality (5), we obtain Pr {Z − μz > εμz} < δ. Note that the same argu-
ment holds for Pr{Z ≤ (1 − ε)μz}. Therefore, we can replace the estimate of

sample size m = c1 ln(b1/δ)
ε2Δg

in HSelect with m =
8
(
ln 1

δ
√

2π
− 1

2 ln ln 1
δ

√
2π

)
ε2Δg

and this
modification makes HSelect more practical.

6 Experimental Results

In this section, we show our preliminary experimental results in the filtering
framework. We apply GiniBoost and MadaBoost for text categorization tasks on
a collection of Reuters news (Reuters-21578 4). We use the modified Apte split
which contains about 10, 000 news documents labeled with topics. We choose five
major topics and for each topics, we let boosting algorithms classify whether a
news document belongs to the topic or not. As weak hypotheses, we prepare
about 30, 000 decision stumps corresponding to words.

We evaluate algorithms using cross validation in a random fashion, as done
in [4]. For each topic, we split the data randomly into a training data with
probability 0.7 and a test data with probability 0.3. We prepare 10 pairs of
such training and test data. We train algorithms over the training data until
they sample 1, 000, 000 examples in total, and then we evaluate them over the
test data. The results are averaged over 10 trials and 5 topics. We conduct our
experiments on a computer with a CPU Xeon 3.8GHz using 8 Gb of memory
under Linux.

We consider two versions of GiniBoost in our experiments. The first version is
the original one which we described in Section 3. The second version is a slight
modification of the original one, in which we use αt[±1] = γt[±1]. We call this
version GiniBoost2.

We run GiniBoost with HSelect(ε, δ), where parameter ε = 0.75 and δ = 0.1
are fixed. Also, we run MadaBoost with geometric AdaSelect [5] whose pa-
rameters are s = 2, ε = 0.5 and δ = 0.1. Note that, in this setting, we de-
mand both HSelect and AdaSelect to output a weak hypothesis ht with γ2

t ≥
(1/4)maxh′∈W γt(h′)2. In the following experiments, we use the approximation
based on the central limit theorem, described in Section 5.

The results are shown in Table 1 and Figure 4, As indicated, GiniBoost and
GiniBoost2 improve the performance of MadaBoost. We also run AdaBoost
(without sampling) for 100 iterations, where AdaBoost processes about 1,000,000
examples. Then, GiniBoost is about three times faster than AdaBoost, while
improving the accuracy. The main reason why filtering-based algorithms save
time would be that they use rejection sampling. By using rejection sampling,
4 http://www.daviddlewis.com/resources/testcollections/reuters21578

316 K. Hatano

Fig. 4. Test errors (%) of boosting algorithms for Reuters-21578 data. The test errors
are averaged over topics.

Table 1. Summary of experiments over Reuters-2158

of sampled examples # of accepted examples time (sec.) test error (%)
Ada. N/A N/A 1349 5.6
Mada. 1,032,219 157,320 493 6.7
Gini. 1,039,943 156,856 408 5.8
Gini2. 1,027,874 140,916 359 5.5

filtering-based algorithms keep only accepted examples in hand. Since the num-
ber of accepted example is much smaller than that of the whole given sample,
we can find weak hypotheses faster over accepted examples than over the given
sample.

In particular, GiniBoost uses fewer accepted examples than MadaBoost.mainly
because they use different criteria. Roughly speaking, MadaBoost takes Õ(1/γ2

t)
accepted examples in order to estimate γt. On the other hand, in order to estimate
Δt, GiniBoost takes Õ(1/Δt) accepted examples, which is smaller than Õ(1/γ2

t).
This consideration would explain why GiniBoost is faster than MadaBoost.

7 Summary and Future Work

In this paper, we propose a smooth boosting algorithm that uses an information-
based criterion based on Gini index for choosing hypotheses. Our preliminary
experiments show that our algorithm performs well in the filtering framework.
As future work, we further investigate the connections between boosting and
information-based criteria. Also, we will conduct experiments over much huge
data in the filtering framework.

Smooth Boosting Using an Information-Based Criterion 317

Acknowledgments

I would like to thank Prof. Masayuki Takeda of Kyushu University for his var-
ious support. I thank Prof. Osamu Wannabe and Prof. Eiji Takimoto for their
discussion. I also thank anonymous referees for their helpful comments. This
work is supported in part by the 21st century COE program at Graduate School
of Information Science and Electrical Engineering in Kyushu University.

References

1. J. A. Aslam. Improving algorithms for boosting. In Proc. 13th Annu. Conference
on Comput. Learning Theory, pages 200–207, 2000.

2. Jose L. Balcazar, Yang Dai, and Osamu Watanabe. Provably fast training algo-
rithms for support vector machines. In Proceedings of IEEE International Confer-
ence on Data Mining (ICDM’01), pages 43–50, 2001.

3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.

4. Sanjoy Dasgupta and Philip M. Long. Boosting with diverse base classifers. In
Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel
Workshop, pages 273–287, 2003.

5. C. Domingo, R. Gavaldà, and O. Watanabe. Adaptive sampling methods for scal-
ing up knowledge discovery algorithms. Data Mining and Knowledge Discovery,
6(2):131–152, 2002.

6. C. Domingo and O. Watanabe. MadaBoost: A modification of AdaBoost. In
Proceedings of 13th Annual Conference on Computational Learning Theory, pages
180–189, 2000.

7. P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the
Sixth ACM International Conference on Knowledge Discovery and Data Mining,
pages 71–80, 2000.

8. W. Feller. An introduction to probability theory and its applications. Wiley, 1950.
9. Y. Freund. An improved boosting algorithm and its implications on learning com-

plexity. In Proc. 5th Annual ACM Workshop on Computational Learning Theory,
pages 391–398. ACM Press, New York, NY, 1992.

10. Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

11. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

12. Yoav Freund. An adaptive version of the boost by majority algorithm. In COLT
’99: Proceedings of the twelfth annual conference on Computational learning theory,
pages 102–113, 1999.

13. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Annals of Statisitics, 2:337–374, 2000.

14. D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic
learning. Journal of Machine Learning Research, 2003.

15. K. Hatano and M. K. Warmuth. Boosting versus covering. In Advances in Neural
Information Processing Systems 16, 2003.

318 K. Hatano

16. K. Hatano and O. Watanabe. Learning r-of-k functions by boosting. In Proceedings
of the 15th International Conference on Algorithmic Learning Theory, pages 114–
126, 2004.

17. Kohei Hatano. Smooth boosting using an information-based criterion. Technical
Report DOI-TR-225, Department of Informatics, Kyushu University, 2006.

18. M. Kearns and Y. Mansour. On the boosting ability of top-down decision tree
learning algorithms. Journal of Computer and System Sciences, 58(1):109–128,
1999.

19. Yishay Mansour and David A. McAllester. Boosting using branching programs.
Journal of Computer and System Sciences, 64(1):103–112, 2002.

20. R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a
new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651–1686, 1998.

21. Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

22. Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

23. Tobias Scheffer and Stefan Wrobel. Finding the most interesting patterns in a
database quickly by using sequential sampling. Journal of Machine Learning Re-
search, 3:833–862, 2003.

24. R. J. Serfling. Approximation theorems of mathematical statistics. Wiley, 1980.
25. R. A. Servedio. Smooth boosting and learning with malicious noise. In 14th Annual

Conference on Computational Learning Theory, pages 473–489, 2001.
26. Eiji Takimoto, Syuhei Koya, and Akira Maruoka. Boosting based on divide and

merge. In Proceedings of the 15th International Conference on Algorithmic Learn-
ing Theory, pages 127–141, 2004.

27. L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

Appendix

Lemma 3. Let L(x) = x + 1, if x > 0 and ex, otherwise. Then it holds for any
a ∈ R and any x ∈ [−1,+1] that

L(x+ a) ≤ L(a) + L′(a)x + L′(a)x2.

Proof. For any x ∈ [−1, 1], let gx(a) = L(a)+L′(a)(x+x2)−L(x+a). We consider
the following cases. (Case 1: x+a, a ≤ 0) We have gx(a) = ea(1+x+x2−ex) ≥ 0,
as ex ≤ 1 + x + x2 for x ∈ [−1, 1]. (Case 2: x + a, a ≥ 0) It is immediate to
see that gx(a) = x2 ≥ 0. (Case 3: x + a < 0, and a > 0) It holds that gx(a) =
1+a+x+x2−ex+a ≥ 0 since g′x(a) = 1−ex+a > 0 and gx(0) = 1+x+x2−ex ≥ 0.
(Case 4: x+a > 0, and a < 0) By using the fact that 1+x+x2 ≥ ex for x ∈ [−1, 1],
we have gx(a) = ea(1 + x + x2)− (x + a + 1) ≥ ex+a − (1 + x + a) ≥ 0.

Large-Margin Thresholded Ensembles for
Ordinal Regression: Theory and Practice

Hsuan-Tien Lin and Ling Li

Learning Systems Group, California Institute of Technology, USA
htlin@caltech.edu, ling@caltech.edu

Abstract. We propose a thresholded ensemble model for ordinal regres-
sion problems. The model consists of a weighted ensemble of confidence
functions and an ordered vector of thresholds. We derive novel large-
margin bounds of common error functions, such as the classification error
and the absolute error. In addition to some existing algorithms, we also
study two novel boosting approaches for constructing thresholded ensem-
bles. Both our approaches not only are simpler than existing algorithms,
but also have a stronger connection to the large-margin bounds. In addi-
tion, they have comparable performance to SVM-based algorithms, but
enjoy the benefit of faster training. Experimental results on benchmark
datasets demonstrate the usefulness of our boosting approaches.

1 Introduction

Ordinal regression resides between multiclass classification and metric regression
in the area of supervised learning. They have many applications in social science
and information retrieval to match human preferences. In an ordinal regression
problem, examples are labeled with a set of K ≥ 2 discrete ranks, which, unlike
general class labels, also carry ordering preferences. However, ordinal regression
is not exactly the same as common metric regression, because the label set is of
finite size and metric distance between ranks is undefined.

Several approaches for ordinal regression were proposed in recent years from a
machine learning perspective. For example, Herbrich et al. [1] designed an algo-
rithm with support vector machines (SVM). Other SVM formulations were first
studied by Shashua and Levin [2], and some improved ones were later proposed
by Chu and Keerthi [3]. Crammer and Singer [4] generalized the perceptron
learning rule for ordinal regression in an online setting. These approaches are all
extended from well-known binary classification algorithms [5]. In addition, they
share a common property in predicting: the discrete rank comes from thresh-
olding a continuous potential value, which represents an ordering preference.
Ideally, examples with higher ranks should have higher potential values.

In the special case of K = 2, ordinal regression is similar to binary classifica-
tion [6]. If we interpret the similarity from the other side, the confidence function
for a binary classifier can be naturally used as an ordering preference. For exam-
ple, Freund et al. [7] proposed a boosting algorithm, RankBoost, that constructs
an ensemble of those confidence functions to form a better ordering preference.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 319–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

320 H.-T. Lin and L. Li

However, RankBoost was not specifically designed for ordinal regression. Hence,
some efforts are needed when applying RankBoost for ordinal regression.

In this work, we combine the ideas of thresholding and ensemble learning to
propose a thresholded ensemble model for ordinal regression. In our model, po-
tential values are computed from an ensemble of confidence functions, and then
thresholded to rank labels. It is well-known that ensemble is useful and powerful
in approximating complex functions for classification and metric regression [8].
Our model shall inherit the same advantages for ordinal regression. Furthermore,
we define margins for the thresholded ensemble model, and derive novel large-
margin bounds of its out-of-sample error. The results indicate that large-margin
thresholded ensembles could generalize well.

Algorithms for constructing thresholded ensembles are also studied. We not
only combine RankBoost with a thresholding algorithm, but also propose two
simpler boosting formulations, named ordinal regression boosting (ORBoost).
ORBoost formulations have stronger connections with the large-margin bounds
that we derive, and are direct generalizations to the famous AdaBoost algo-
rithm [9]. Experimental results demonstrate that ORBoost formulations share
some good properties with AdaBoost. They usually outperform RankBoost, and
have comparable performance to SVM-based algorithms.

This paper is organized as follows. Section 2 introduces ordinal regression, as
well as the thresholded ensemble model. Large-margin bounds for thresholded
ensembles are derived in Sect. 3. Then, an extended RankBoost algorithm and
two ORBoost formulations, which construct thresholded ensembles, are discussed
in Sect. 4. We show the experimental results in Sect. 5, and conclude in Sect. 6.

2 Thresholded Ensemble Model for Ordinal Regression

In an ordinal regression problem, we are given a set of training examples S =
{(xn, yn)}N

n=1, where each input vector xn ∈ RD is associated with an ordinal
label (i.e., rank) yn. We assume that yn belongs to a set {1, 2, . . . ,K}. The goal
is to find an ordinal regression rule G(x) that predicts the rank y of an unseen
input vector x. For a theoretic setting, we shall assume that all input-rank pairs
are drawn i.i.d. from some unknown distribution D.

The setting above looks similar to that of a multiclass classification problem.
Hence, a general classification error,1

EC(G,D) = E(x,y)∼D�G(x) �= y�,

can be used to measure the performance of G. However, the classification error
does not consider the ordering preference of the ranks. One naive interpretation
of the ordering preference is as follows: for an example (x, y) with y = 4, if
G1(x) = 3 and G2(x) = 1, G1 is preferred over G2 on that example. A common
practice to encode such preference is to use the absolute error:

EA(G,D) = E(x,y)∼D |G(x) − y| .
1 �·� = 1 when the inner condition is true, and 0 otherwise.

Large-Margin Thresholded Ensembles for Ordinal Regression 321

Next, we propose the thresholded ensemble model for ordinal regression. As
the name suggests, the model has two components: a vector of thresholds, and
an ensemble of confidence functions.

Thresholded models are widely used for ordinal regression [3, 4]. The thresh-
olds can be thought as estimated scales that reflect the discrete nature of ordinal
regression. The ordinal regression rule, denoted as GH,θ, is illustrated in Fig. 1.
Here H(x) computes the potential value of x, and θ is a (K − 1) dimensional
ordered vector that contains the thresholds (θ1 ≤ θ2 ≤ · · · ≤ θK−1). We shall
denote GH,θ as Gθ when H is clear from the context. Then, if we let θ0 = −∞
and θK = ∞, the ordinal regression rule is

Gθ(x) = min {k : H(x) ≤ θk} = max {k : H(x) > θk−1} = 1 +
K−1∑
k=1

�H(x) > θk�.

In the thresholded ensemble model, we take an ensemble of confidence func-
tions to compute the potentials. That is,

H(x) = HT (x) =
T∑

t=1

αtht(x), αt ∈ R.

We shall assume that the confidence function ht comes from a hypothesis set H,
and has an output range [−1, 1]. A special case of the confidence function, which
only outputs−1 or 1, would be called a binary classifier. Each confidence function
reflects a possibly imperfect ordering preference. The ensemble linearly combines
the ordering preferences with α. Note that we allow αt to be any real value, which
means that it is possible to reverse the ordering preference of ht in the ensemble
when necessary.

Ensemble models in general have been successfully used for classification and
metric regression [8]. They not only introduce more stable predictions through
the linear combination, but also provide sufficient power for approximating com-
plex functions. These properties shall be inherited by the thresholded ensemble
model for ordinal regression.

3 Large-Margin Bounds for Thresholded Ensembles

Margin is an important concept in structural risk minimization [10]. Many large-
margin error bounds were proposed based on the intuition that large margins
lead to good generalization. They are typically of the form

E1(G,D) ≤ E2(G,Su, Δ) + complexity term.

Here E1(G,D) is the generalization error of interest, such as EA(G,D). Su de-
notes the uniform distribution on the set S, and E2(G,Su, Δ) represents some
training error with margin Δ, which will be further explained in this section.

For ordinal regression, Herbrich et al. [1] derived a large-margin bound for a
thresholded ordinal regression ruleG. Unfortunately the bound is quite restricted

322 H.-T. Lin and L. Li

�� �

θ1

� � �

θ2

x xx x
θ3

++

�
ρ1 �

ρ2 �
ρ3

1 2 3 4 Gθ(x)
H(x)

Fig. 1. The thresholded model and the margins of a correctly-predicted example

since it requires that E2(G,Su, Δ) = 0. In addition, the bound uses a definition
of margin that has O(N2) terms, which makes it more complicated to design
algorithms that relate to the bound. Another bound was derived by Shashua
and Levin [2]. The bound is based on a margin definition of only O(KN) terms,
and is applicable to the thresholded ensemble model. However, the bound is
loose when T , the size of the ensemble, is large, because its complexity term
grows with T .

In this section, we derive novel large-margin bounds of different error func-
tions for the thresholded ensemble model. The bounds are extended from the
results of Schapire et al. [11]. Our bounds are based on a margin definition
of O(KN) terms. Similar to the results of Schapire et al., our bounds do not
require E2(G,Su, Δ) = 0, and their complexity terms do not grow with T .

3.1 Margins

The margins with respect to a thresholded model are illustrated in Fig. 1. Intu-
itively, we expect the potential value H(x) to be in the correct interval (θy−1, θy],
and we want H(x) to be far from the boundaries (thresholds):

Definition 1. Consider a given thresholded ensemble Gθ(x).

1. The margin of an example (x, y) with respect to θk is defined as

ρk(x, y) =

{
H(x)− θk, if y > k;
θk −H(x), if y ≤ k.

2. The normalized margin ρ̄k(x, y) is defined as

ρ̄k(x, y) = ρk(x, y)
/(T∑

t=1

|αt|+
K−1∑
k=1

|θk|
)
.

Definition 1 is similar to the definition by Shashua and Levin [2], which is anal-
ogous to the definition of margins in binary classification. A negative ρk(x, y)
would indicate an incorrect prediction.

For each example (x, y), we can obtain (K − 1) margins from Definition 1.
However, two of them are of the most importance. The first one is ρy−1(x, y),
which is the margin to the left (lower) boundary of the correct interval. The other
is ρy(x, y), which is the margin to the right (upper) boundary. We will give them

Large-Margin Thresholded Ensembles for Ordinal Regression 323

special names: the left-margin ρL(x, y), and the right-margin ρR(x, y). Note that
by definition, ρL(x, 1) = ρR(x,K) =∞.

Δ-classification error: Next, we take a closer look at the error functions for
thresholded ensemble models. If we make a minor assumption that the degener-
ate cases ρ̄R(x, y) = 0 are of an infinitesimal probability,

EC(Gθ,D) = E(x,y)∼D�Gθ(x) �= y�

= E(x,y)∼D�ρ̄L(x, y) ≤ 0 or ρ̄R(x, y) ≤ 0�.

The definition could be generalized by expecting both margins to be larger
than Δ. That is, define the Δ-classification error as

EC(Gθ,D, Δ) = E(x,y)∼D�ρ̄L(x, y) ≤ Δ or ρ̄R(x, y) ≤ Δ�.

Then, EC(Gθ,D) is just a special case with Δ = 0.

Δ-boundary error: The “or” operation of EC(Gθ,D, Δ) is not easy to handle
in the proof of the coming bounds. An alternative choice is the Δ-boundary
error:

EB(Gθ,D, Δ) = E(x,y)∼D

⎧⎪⎨⎪⎩
�ρ̄R(x, y) ≤ Δ�, if y = 1;
�ρ̄L(x, y) ≤ Δ�, if y = K;
1
2 · (�ρ̄L(x, y) ≤ Δ� + �ρ̄R(x, y) ≤ Δ�) , otherwise.

The Δ-boundary error and the Δ-classification error are equivalent up to a
constant. That is, for any (Gθ,D, Δ),

1
2EC(Gθ,D, Δ) ≤ EB(Gθ,D, Δ) ≤ EC(Gθ,D, Δ). (1)

Δ-absolute error: We can analogously define the Δ-absolute error as

EA(Gθ,D, Δ) = E(x,y)∼D

K−1∑
k=1

�ρ̄k(x, y) ≤ Δ�.

Then, if we assume that the degenerate cases ρk(x, y) = 0 happen with an
infinitesimal probability, EA(Gθ,D) is just a special case with Δ = 0.

3.2 Large-Margin Bounds

An important observation for deriving our bounds is that EB and EA can be
written with respect to an additional sampling of k. For example,

EA(Gθ ,D, Δ) = (K − 1)E(x,y)∼D,k∼{1,...,K−1}u
�ρ̄k(x, y) ≤ Δ�.

Equivalently, we can define a distribution D̂ by D and {1, . . . ,K − 1}u to gen-
erate the tuple (x, y, k). Then EA(Gθ,D) is simply the portion of nonposi-
tive ρ̄k(x, y) under D̂. Consider an extended training set Ŝ = {(xn, yn, k)}

324 H.-T. Lin and L. Li

with N(K − 1) elements. Each element is a possible outcome from D̂. Note,
however, that these elements are not all independent. For example, (xn, yn, 1)
and (xn, yn, 2) are dependent. Thus, we cannot directly use the whole Ŝ as a set
of i.i.d. outcomes from D̂.

Fortunately, some subsets of Ŝ contain independent outcomes from D̂. One
way to extract such subsets is to choose one kn from {1, . . . ,K − 1}u for each ex-
ample (xn, yn) independently. The subset would be named T ={(xn, yn, kn)}N

n=1.
Then, we can obtain a large-margin bound of the absolute error:

Theorem 1. Consider a setH, which contains only binary classifiers, is negation-
complete,2 and has VC-dimension d. Let δ > 0, and N > d + K − 1 = d̂. Then
with probability at least 1 − δ over the random choice of the training set S, every
thresholded ensemble Gθ(x), where the associated H is constructed with h ∈ H,
satisfies the following bound for all Δ > 0:

EA(Gθ ,D) ≤ EA(Gθ,Su, Δ) + O

⎛⎝ K√
N

(
d̂ log2(N/d̂)

Δ2 + log
1
δ

)1/2
⎞⎠ .

Proof. The key is to reduce the ordinal regression problem to a binary classifica-
tion problem, which consists of training examples derived from (xn, yn, kn) ∈ T :

(Xn, Yn) =

{(
(xn,1kn) ,+1

)
, if yn > kn;(

(xn,1kn) ,−1
)
, if yn ≤ kn,

(2)

where 1m is a vector of length (K − 1) with a single 1 at the m-th dimension
and 0 elsewhere. The test examples are constructed similarly with (x, y, k) ∼ D̂.
Then, large-margin bounds for the ordinal regression problem can be inferred
from those for the binary classification problem, as shown in Appendix A. ��

Similarly, if we look at the boundary error,

EB(Gθ,D, Δ) = E(x,y)∼D,k∼By
�ρ̄k(x, y) ≤ Δ�,

for some distribution By on {L,R}. Then, a similar proof leads to

Theorem 2. For the same conditions as of Theorem 1,

EB(Gθ ,D) ≤ EB(Gθ,Su, Δ) + O

⎛⎝ 1√
N

(
d̂ log2(N/d̂)

Δ2 + log
1
δ

)1/2
⎞⎠ .

Then, a large-margin bound of the classification error can immediately be derived
by applying (1).

Corollary 1. For the same conditions as of Theorem 1,

EC(Gθ,D) ≤ 2EC(Gθ,Su, Δ) + O

⎛⎝ 1√
N

(
d̂ log2(N/d̂)

Δ2 + log
1
δ

)1/2
⎞⎠ .

2 h ∈ H ⇐⇒ (−h) ∈ H, where (−h)(x) = −(h(x)
)

for all x.

Large-Margin Thresholded Ensembles for Ordinal Regression 325

Similar bounds can be derived with another large-margin theorem [11, The-
orem 4] when H contains confidence functions rather than binary classifiers.
These bounds provide motivations for building algorithms with margin-related
formulations.

4 Boosting Algorithms for Thresholded Ensembles

The bounds in the previous section are applicable to thresholded ensembles gen-
erated from any algorithms. One possible algorithm, for example, is an SVM-
based approach [3] with special kernels [12]. In this section, we focus on another
branch of approaches: boosting. Boosting approaches can iteratively grow the en-
semble H(x), and have been successful in classification and metric regression [8].
Our study includes an extension to the RankBoost algorithm [7] and two novel
formulations that we propose.

4.1 RankBoost for Ordinal Regression

RankBoost [7] constructs a weighted ensemble of confidence functions based
on the following large-margin concept: for each pair (i, j) such that yi > yj ,
the difference between their potential values, Ht(xi) −Ht(xj), is desired to be
positive and large. Thus, in the t-th iteration, the algorithm chooses (ht, αt) to
approximately minimize∑

yi>yj

e−Ht−1(xi)−αtht(xi)+Ht−1(xj)+αtht(xj). (3)

Our efforts in extending RankBoost for ordinal regression are discussed as
follows:

Computing αt: Two approaches can be used to determine αt in RankBoost [7]:

1. Obtain the optimal αt by numerical search (confidence functions) or analyt-
ical solution (binary classifiers).

2. Minimize an upper bound of (3).

If ht(xn) is monotonic with respect to yn, the optimal αt obtained from ap-
proach 1 is ∞, and one single ht would dominate the ensemble. This situation
not only makes the ensemble less stable, but also limits its power. For exam-
ple, if (yn, ht(xn)) pairs for four examples are (1,−1), (2, 0), (3, 1), and (4, 1),
ranks 3 and 4 on the last two examples cannot be distinguished by ht. We have
frequently observed such a degenerate situation, called partial matching, in real-
world experiments, even when ht is as simple as a decision stump. Thus, we shall
use approach 2 for our experiments. Note, however, that when partial matching
happens, the magnitude of αt from approach 2 can still be relatively large, and
may cause numerical difficulties.

Obtaining θ: After RankBoost computes a potential function H(x), a reason-
able way to obtain the thresholds based on training examples is

θ = argminϑ EA(Gϑ,Su). (4)

326 H.-T. Lin and L. Li

The combination of RankBoost and the absolute error criterion (4) would be
called RankBoost-AE. The optimal range of ϑk can be efficiently determined
by dynamic programming. For simplicity and stability, we assign θk to be the
middle value in the optimal range. The algorithm that aims at EC instead of
EA can be similarly derived.

4.2 Ordinal Regression Boosting with Left-Right Margins

The idea of ordinal regression boosting comes from the definition of margins
in Sect. 3. As indicated by our bounds, we want the margins to be as large
as possible. To achieve this goal, our algorithms, similar to AdaBoost, work on
minimizing the exponential margin loss.

First, we introduce a simple formulation called ordinal regression boosting
with left-right margins (ORBoost-LR), which tries to minimize

N∑
n=1

[
e−ρL(xn,yn) + e−ρR(xn,yn)

]
. (5)

The formulation can be thought as maximizing the soft-min of the left- and right-
margins. Similar to RankBoost, the minimization is performed in an iterative
manner. In each iteration, a confidence function ht is chosen, its weight αt is
computed, and the vector θ is updated. If we plug in the margin definition
to (5), we can see that the iteration steps should be designed to approximately
minimize

N∑
n=1

[
ϕne

αtht(xn)−θyn + ϕ−1
n eθyn−1−αtht(xn)

]
, (6)

where ϕn = eHt−1(xn). Next, we discuss these three steps in detail.

Choosing ht: Mason et al. [13] explained AdaBoost as a gradient descent
technique in function space. We derive ORBoost-LR using the same technique.
We first choose a confidence function ht that is close to the negative gradient:

ht = argmin
h∈H

N∑
n=1

h(xn)
(
ϕne

−θyn − ϕ−1
n eθyn−1

)
.

This step can be performed with the help of another learning algorithm, called
the base learner.

Computing αt: Similar to RankBoost, we minimize an upper bound of (6),
which is based on a piece-wise linear approximation of ex for x ∈ [−1, 0] and
x ∈ [0, 1]. The bound can be written as W+e

α + W−e
−α, with

W+ =
∑

ht(xn)>0

ht(xn)ϕne
−θyn −

∑
ht(xn)<0

ht(xn)ϕ−1
n eθyn−1 ,

W− =
∑

ht(xn)>0

ht(xn)ϕ−1
n eθyn−1 −

∑
ht(xn)<0

ht(xn)ϕne
−θyn .

Then, the optimal αt for the bound can be computed by 1
2 log W−

W+
.

Large-Margin Thresholded Ensembles for Ordinal Regression 327

Note that the upper bound is equal to (6) if ht(xn) ∈ {−1, 0, 1}. Thus, when ht

is a binary classifier, the optimal αt can be exactly determined. Another remark
here is that αt is finite under some mild conditions which make both W+ and W−
positive. Thus, unlike RankBoost, ORBoost-LR rarely sets αt to ∞.

Updating θ: Note that when the pair (ht, αt) is fixed, (6) can be reorganized
as
∑K−1

k=1 Wk,+e
θk + Wk,−e

−θk . Then, each θk can be computed analytically,
uniquely, and independently. However, when each θk is updated independently,
the thresholds may not be ordered. Hence, we propose to add an additional
ordering constraint to (6). That is, choosing θ by solving

min
ϑ

K−1∑
k=1

Wk,+e
ϑk + Wk,−e

−ϑk (7)

s.t. ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑK−1.

An efficient algorithm for solving (7) can be obtained from by a simple modifi-
cation of the pool adjacent violators algorithm(PAV) for isotonic regression [14].

Combination of the steps: ORBoost-LR works by combining the three steps
above sequentially in each iteration. Note that after ht is determined, αt and θt

can be either jointly optimized, or cyclically updated. However, we found that
joint or cyclic optimization does not always introduce better performance, and
could sometimes cause ORBoost-LR to overfit. Thus, we only execute each step
once in each iteration.

4.3 Ordinal Regression Boosting with All Margins

ORBoost with all margins (ORBoost-All) operates on

N∑
n=1

K−1∑
k=1

e−ρk(xn,yn) (8)

instead of (6). The derivations for the three steps are almost the same as
ORBoost-LR. We shall just make some remarks.

Updating θ: When using (8) to update the thresholds, we have proved that
each θk can be updated uniquely and independently, while still being ordered [5].
Thus, we do not need to implement the PAV algorithm for ORBoost-All.

Relationship between algorithm and theory: A simple relation is that for
any Δ, e−Aρ̄k(xn,yn) is an upper bound of e−AΔ · �ρ̄k(xn, yn) ≤ Δ�. If we take A
to be the normalization term of ρ̄k, we can see that

– ORBoost-All works on minimizing an upper bound of EA(Gθ,Su, Δ).
– ORBoost-LR works to minimizing an upper bound of EB(Gθ,Su, Δ), or

1
2EC(Gθ,Su, Δ).

328 H.-T. Lin and L. Li

ORBoost-All not only minimizes an upper bound, but provably also minimizes
the term EA(Gθ,Su, Δ) exponentially fast with a sufficiently strong choice of ht.
The proof relies on an extension of the training error theorem of AdaBoost [11,
Theorem 5]. Similar proof can be used for ORBoost-LR.

Connection to other algorithms: ORBoost approaches are direct general-
izations of AdaBoost using the gradient descent optimization point of view. In
the special case of K = 2, both ORBoost approaches are almost the same as
AdaBoost with an additional term θ1. Note that the term θ1 can be thought as
the coefficient of a constant classifier. Interestingly, Rudin et al. [6] proved the
connection between RankBoost and AdaBoost when including a constant clas-
sifier in the ensemble. Thus, when K = 2, RankBoost-EA, ORBoost-LR, and
ORBoost-All, all share some similarity with AdaBoost.

ORBoost formulations also have connections with SVM-based algorithms. In
particular, ORBoost-LR has a counterpart of SVM with explicit constraints
(SVM-EXC), and ORBoost-All is related to SVM with implicit constraints
(SVM-IMC) [3]. These connections follow closely with the links between Ada-
Boost and SVM [12,15].

5 Experiments

In this section, we compare the three boosting formulations for constructing the
thresholded ensemble model. We also compare these formulations with SVM-
based algorithms.

Two sets of confidence functions are used in the experiments. The first one
is the set of perceptrons

{
sign

(
wTx + b

)
: w ∈ RD, b ∈ R

}
. The RCD-bias algo-

rithm is known to work well with AdaBoost [16], and is adopted as our base
learner.

The second set is
{
tanh(wTx + b) : wTw + b2 = γ2

}
, which contains normal-

ized sigmoid functions. Note that sigmoid functions smoothen the output of
perceptrons, and the smoothness is controlled by the parameter γ. We use a
naive base learner for normalized sigmoid functions as follows: RCD-bias is first
performed to get a perceptron. Then, the weights and bias of the perceptron are
normalized, and the outputs are smoothened. Throughout the experiments we
use γ = 4, which was picked with a few experimental runs on some datasets.

5.1 Artificial Dataset

We first verify that the idea of the thresholded ensemble model works with an
artificial 2-D dataset (Fig. 2(a)). Figure 2(b) depicts the separating boundaries
of the thresholded ensemble of 200 perceptrons constructed by ORBoost-All. By
combining perceptrons, ORBoost-All works reasonably well in approximating
the nonlinear boundaries. A similar plot can be obtained with ORBoost-LR.
RankBoost-AE cannot perform well on this dataset due to numerical difficulties
(see Subsect. 4.1) after only 5 iterations.

If we use a thresholded ensemble of 200 normalized sigmoid functions, it is ob-
served that ORBoost-All, ORBoost-LR, and RankBoost-AE perform similarly.

Large-Margin Thresholded Ensembles for Ordinal Regression 329

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) the target
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) with perceptron
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) with sigmoid

Fig. 2. An artificial 2-D dataset and the learned boundaries with ORBoost-All

The result of ORBoost-All (Fig. 2(c)) shows that the separating boundaries are
much smoother because each sigmoid function is smooth. As we shall discuss
later, the smoothness can be important for some ordinal regression problems.

5.2 Benchmark Datasets

Next, we perform experiments with eight benchmark datasets3 that were used
by Chu and Keerthi [3]. The datasets are quantized from some metric regression
datasets. We use the same K = 10, the same “training/test” partition ratio, and
also average the results over 20 trials. Thus, we can compare RankBoost and
ORBoost fairly with the SVM-based results of Chu and Keerthi [3].

The results on the abalone dataset with T up to 2000 are given in Fig. 3. The
training errors are shown in the top plots, while the test errors are shown in the
bottom plots. Based on these results, we have several remarks:

RankBoost vs. ORBoost: RankBoost-AE can usually decrease both the
training classification and the training absolute errors faster than ORBoost al-
gorithms. However, such property often lead to consistently worse test error than
both ORBoost-LR and ORBoost-All. An explanation is that although the Rank-
Boost ensemble orders the training examples well, the current estimate of θ is
not used to decide (ht, αt). Thus, the two components (HT , θ) of the thresholded
ensemble model are not jointly considered, and the greediness in constructing
only HT results in overfitting. In contrast, ORBoost-LR and ORBoost-All take
into consideration the current θ in choosing (ht, αt) and the current HT in up-
dating θ. Hence, a better pair of (HT , θ) could be obtained.

ORBoost-LR vs. ORBoost-All: Both ORBoost formulations inherit a good
property from AdaBoost: not very vulnerable to overfitting. ORBoost-LR is
better on test classification errors, while ORBoost-All is better on test abso-
lute errors. This is partially justified by our discussion in Subsect. 4.3 that
the two formulations minimize different margin-related upper bounds. A sim-
ilar observation was made by Chu and Keerthi [3] on SVM-EXC and SVM-IMC
algorithms. Note, however, that ORBoost-LR with perceptrons minimizes the

3 Pyrimdines, machineCPU, boston, abalone, bank, computer, california, and census.

330 H.-T. Lin and L. Li

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

T

tr
ai

ni
ng

 c
la

ss
ifi

ca
tio

n
er

ro
r

0 500 1000 1500 2000
0

0.5

1

1.5

2

T

tr
ai

ni
ng

 a
bs

ol
ut

e
er

ro
r

0 500 1000 1500 2000
0.7

0.75

0.8

0.85

0.9

0.95

1

T

te
st

 c
la

ss
ifi

ca
tio

n
er

ro
r

ORBoost−LR, perceptron
ORBoost−LR, sigmoid
ORBoost−All, perceptron
ORBoost−All, sigmoid
RankBoost−EA, perceptron
RankBoost−EA, sigmoid

0 500 1000 1500 2000
1.2

1.4

1.6

1.8

2

T

te
st

 a
bs

ol
ut

e
er

ro
r

Fig. 3. Errors on the abalone dataset over 20 runs

training classification error slower than ORBoost-All on this dataset, because the
additional ordering constraint of θ in ORBoost-LR slows down the convergence.

Perceptron vs. sigmoid: Formulations with sigmoid functions have consis-
tently higher training error, which is due to the naive choice of base learner and
the approximation of αt. However, the best test performance is also achieved
with sigmoid functions. One possible reason is that the abalone dataset is quan-
tized from a metric regression dataset, and hence contains some properties such
as smoothness of the boundaries. If we only use binary classifiers like percep-
trons, as depicted in Fig. 2(b), the boundaries would not be as smooth, and
more errors may happen. Thus, for ordinal regression datasets that are quan-
tized from metric regression datasets, smooth confidence functions may be more
useful than discrete binary classifiers.

We list the mean and standard errors of all test results with T = 2000 in
Tables 1 and 2. Consistent with the results on the abalone dataset, RankBoost-
AE almost always performs the worst; ORBoost-LR is better on classification
errors, and ORBoost-All is slightly better on absolute errors. When compared
with SVM-IMC on classification errors and SVM-EXC on absolute errors [3],
both ORBoost formulations have similar errors as the SVM-based algorithms.
Note, however, that ORBoost formulations with perceptrons or sigmoid functions

Large-Margin Thresholded Ensembles for Ordinal Regression 331

Table 1. Test classification error of ordinal regression algorithms

data RankBoost-AE ORBoost-LR ORBoost-All SVM-EXC [3]
set perceptron sigmoid perceptron sigmoid perceptron sigmoid
pyr. 0.758±0.015 0.767±0.020 0.731±0.019 0.731±0.018 0.744±0.019 0.735±0.017 0.752±0.014
mac. 0.717±0.022 0.669±0.011 0.610±0.009 0.633±0.011 0.605±0.010 0.625±0.014 0.661±0.012
bos. 0.603±0.006 0.578±0.008 0.580±0.006 0.549±0.007 0.579±0.006 0.558±0.006 0.569±0.006
aba. 0.759±0.001 0.765±0.002 0.740±0.002 0.716±0.002 0.749±0.002 0.731±0.002 0.736±0.002
ban. 0.805±0.001 0.822±0.001 0.767±0.001 0.777±0.002 0.771±0.001 0.776±0.001 0.744±0.001
com. 0.598±0.002 0.616±0.001 0.498±0.001 0.491±0.001 0.499±0.001 0.505±0.001 0.462±0.001
cal. 0.741±0.001 0.690±0.001 0.628±0.001 0.605±0.001 0.626±0.001 0.618±0.001 0.640±0.001
cen. 0.808±0.001 0.780±0.001 0.718±0.001 0.694±0.001 0.722±0.001 0.701±0.001 0.699±0.000

(results that are within one standard error of the best are marked in bold)

Table 2. Test absolute error of ordinal regression algorithms

data RankBoost-AE ORBoost-LR ORBoost-All SVM-IMC [3]
set perceptron sigmoid perceptron sigmoid perceptron sigmoid
pyr. 1.619±0.078 1.590±0.077 1.340±0.049 1.402±0.052 1.360±0.046 1.398±0.052 1.294±0.046
mac. 1.573±0.191 1.282±0.034 0.897±0.019 0.985±0.018 0.889±0.019 0.969±0.025 0.990±0.026
bos. 0.842±0.014 0.829±0.014 0.788±0.013 0.758±0.015 0.791±0.013 0.777±0.015 0.747±0.011
aba. 1.517±0.005 1.738±0.008 1.442±0.004 1.537±0.007 1.432±0.003 1.403±0.004 1.361±0.003
ban. 1.867±0.004 2.183±0.007 1.507±0.002 1.656±0.005 1.490±0.002 1.539±0.002 1.393±0.002
com. 0.841±0.003 0.945±0.004 0.631±0.002 0.634±0.003 0.626±0.002 0.634±0.002 0.596±0.002
cal. 1.528±0.006 1.251±0.004 1.042±0.004 0.956±0.002 0.977±0.002 0.942±0.002 1.008±0.001
cen. 2.008±0.006 1.796±0.005 1.305±0.003 1.262±0.003 1.265±0.002 1.198±0.002 1.205±0.002

(results that are within one standard error of the best are marked in bold)

are much faster. On the census dataset, which contains 6000 training examples,
it takes about an hour for ORBoost to finish one trial. But SVM-based ap-
proaches, which include a time-consuming automatic parameter selection step,
need more than four days. With the comparable performance and significantly
less computational cost, ORBoost could be a useful tool for large datasets.

6 Conclusion

We proposed a thresholded ensemble model for ordinal regression, and defined
margins for the model. Novel large-margin bounds of common error functions
were proved. We studied three algorithms for obtaining thresholded ensembles.
The first algorithm, RankBoost-AE, combines RankBoost and a thresholding
algorithm. In addition, we designed two new boosting approaches, ORBoost-LR
and ORBoost-All, which have close connections with the large-margin bounds.
ORBoost formulations are direct extensions of AdaBoost, and inherit its advan-
tage of being less venerable to overfitting.

Experimental results demonstrated that ORBoost formulations have superior
performance over RankBoost-AE. In addition, they are comparable to SVM-
based algorithms in terms of test error, but enjoy the advantage of faster train-
ing. These properties make ORBoost formulations favorable over SVM-based
algorithms on large datasets.

ORBoost formulations can be equipped with any base learners for confidence
functions. In this work, we studied the perceptrons and the normalized sigmoid

332 H.-T. Lin and L. Li

functions. Future work could be exploring other confidence functions for OR-
Boost, or extending other boosting approaches to perform ordinal regression.

Acknowledgment

We thank Yaser S. Abu-Mostafa, Amrit Pratap, and the anonymous reviewers
for helpful comments. Hsuan-Tien Lin is supported by the Caltech Division of
Engineering and Applied Science Fellowship.

References

1. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for or-
dinal regression. In: Advances in Large Margin Classifiers. MIT Press (2000)
115–132

2. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches. In:
Advances in Neural Information Processing Systems 15, MIT Press (2003) 961–968

3. Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In:
Proceedings of ICML 2005, Omnipress (2005) 145–152

4. Crammer, K., Singer, Y.: Online ranking by projecting. Neural Computation 17
(2005) 145–175

5. Li, L., Lin, H.T.: Ordinal regression by extended binary classification. Under
review (2007)

6. Rudin, C., Cortes, C., Mohri, M., Schapire, R.E.: Margin-based ranking meets
boosting in the middle. In: Learning Theory: COLT 2005, Springer-Verlag (2005)
63–78

7. Freund, Y., Iyer, R., Shapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4 (2003) 933–969

8. Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Advanced
Lectures on Machine Learning. Springer-Verlag (2003) 118–183

9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In:
Machine Learning: ICML 1996, Morgan Kaufmann (1996) 148–156

10. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag (1995)
11. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new

explanation for the effectiveness of voting methods. The Annals of Statistics 26
(1998) 1651–1686

12. Lin, H.T., Li, L.: Infinite ensemble learning with support vector machines. In:
Machine Learning: ECML 2005, Springer-Verlag (2005) 242–254

13. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Functional gradient techniques for
combining hypotheses. In: Advances in Large Margin Classifiers. MIT Press (2000)
221–246

14. Robertson, T., Wright, F.T., Dykstra, R.L.: Order Restricted Statistical Inference.
John Wiley & Sons (1988)

15. Rätsch, G., Mika, S., Schölkopf, B., Müller, K.R.: Constructing boosting algo-
rithms from SVMs: An application to one-class classification. IEEE Transactions
on Pattern Analysis and Machine Intelligence 24 (2002) 1184–1199

16. Li, L.: Perceptron learning with random coordinate descent. Technical Report
CaltechCSTR:2005.006, California Institute of Technology (2005)

Large-Margin Thresholded Ensembles for Ordinal Regression 333

A Proof of Theorem 1

As shown in (2), we first construct a transformed binary problem. Then, the
problem is modeled by an ensemble function F (x) defined on a base space

F = H ∪ {sk}K−1
k=1 .

Here sk(X) = − sign(XD+k − 0.5) is a decision stump on dimension (D + k). It
is not hard to show that the VC-dimension of F is no more than d̂ = d+K − 1.

Without loss of generality, we normalizeGθ(x) such that
∑T

t=1 |αt|+
∑K−1

k=1 |θk|
is 1. Then, consider the associated ensemble function

F (X) =
T∑

t=1

αtht(X) +
K−1∑
k=1

θksk(X).

An important property for the transform is that for every (X,Y) derived from
the tuple (x, y, k), Y F (X) = ρ̄k(x, y).

Because T contains N i.i.d. outcomes from D̂, the large-margin theorem [11,
Theorem 2] states that with probability at least 1− δ/2 over the choice of T ,

E(x,y,k)∼D̂[Y F (X) ≤ 0] ≤

1
N

N∑
n=1

�YnF (Xn) ≤ Δ� + O

⎛⎝ 1√
N

(
d̂ log2(N/d̂)

Δ2 + log
1
δ

)1/2
⎞⎠ . (9)

Since Y F (X) = ρ̄k(x, y), the left-hand-side is 1
K−1EA(Gθ,D).

Let bn = �YnF (Xn) ≤ Δ� = �ρ̄kn(xn, yn) ≤ Δ�, which is a Boolean ran-
dom variable. An extended Chernoff bound shows that when each bn is chosen
independently, with probability at least 1− δ/2 over the choice of bn,

1
N

N∑
n=1

bn ≤
1
N

N∑
n=1

Ekn∼{1,··· ,K−1}u
bn + O

(
1√
N

(
log

1
δ

)1/2
)
. (10)

The desired result can be obtained by combining (9) and (10), with a union
bound and Ekn∼{1,··· ,K−1}u

bn = 1
K−1EA(Gθ,Su, Δ). ��

Asymptotic Learnability of Reinforcement
Problems with Arbitrary Dependence�

Daniil Ryabko and Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
{daniil, marcus}@idsia.ch

http://www.idsia.ch/∼{daniil, marcus}

Abstract. We address the problem of reinforcement learning in which
observations may exhibit an arbitrary form of stochastic dependence on
past observations and actions, i.e. environments more general than (PO)
MDPs. The task for an agent is to attain the best possible asymptotic re-
ward where the true generating environment is unknown but belongs to
a known countable family of environments. We find some sufficient con-
ditions on the class of environments under which an agent exists which
attains the best asymptotic reward for any environment in the class. We
analyze how tight these conditions are and how they relate to different
probabilistic assumptions known in reinforcement learning and related
fields, such as Markov Decision Processes and mixing conditions.

1 Introduction

Many real-world “learning” problems (like learning to drive a car or playing a
game) can be modelled as an agent π that interacts with an environment μ and
is (occasionally) rewarded for its behavior. We are interested in agents which
perform well in the sense of having high long-term reward, also called the value
V (μ,π) of agent π in environment μ. If μ is known, it is a pure (non-learning)
computational problem to determine the optimal agent πμ :=argmaxπV (μ,π). It
is far less clear what an “optimal” agent means, if μ is unknown. A reasonable
objective is to have a single policy π with high value simultaneously in many
environments. We will formalize and call this criterion self-optimizing later.

Learning approaches in reactive worlds. Reinforcement learning, sequential
decision theory, adaptive control theory, and active expert advice, are theories
dealing with this problem. They overlap but have different core focus: Rein-
forcement learning algorithms [SB98] are developed to learn μ or directly its
value. Temporal difference learning is computationally very efficient, but has
slow asymptotic guarantees (only) in (effectively) small observable MDPs. Oth-
ers have faster guarantee in finite state MDPs [BT99]. There are algorithms
[EDKM05] which are optimal for any finite connected POMDP, and this is ap-
parently the largest class of environments considered. In sequential decision the-
ory, a Bayes-optimal agent π∗ that maximizes V (ξ,π) is considered, where ξ is
� This work was supported by the Swiss NSF grant 200020-107616.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 334–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Asymptotic Learnability of Reinforcement Problems 335

a mixture of environments ν ∈C and C is a class of environments that contains
the true environment μ∈C [Hut05]. Policy π∗ is self-optimizing in an arbitrary
(e.g. non-POMDP) class C, provided C allows for self-optimizingness [Hut02].
Adaptive control theory [KV86] considers very simple (from an AI perspective)
or special systems (e.g. linear with quadratic loss function), which sometimes
allow computationally and data efficient solutions. Action with expert advice
[dFM04, PH05, PH06, CBL06] constructs an agent (called master) that per-
forms nearly as well as the best agent (best expert in hindsight) from some class
of experts, in any environment ν. The important special case of passive sequence
prediction in arbitrary unknown environments, where the actions=predictions do
not affect the environment is comparably easy [Hut03, HP04].

The difficulty in active learning problems can be identified (at least, for count-
able classes) with traps in the environments. Initially the agent does not know
μ, so has asymptotically to be forgiven in taking initial “wrong” actions. A
well-studied such class are ergodic MDPs which guarantee that, from any action
history, every state can be (re)visited [Hut02].

What’s new. The aim of this paper is to characterize as general as possi-
ble classes C in which self-optimizing behaviour is possible, more general than
POMDPs. To do this we need to characterize classes of environments that for-
give. For instance, exact state recovery is unnecessarily strong; it is sufficient
being able to recover high rewards, from whatever states. Further, in many
real world problems there is no information available about the “states” of the
environment (e.g. in POMDPs) or the environment may exhibit long history
dependencies.

Rather than trying to model an environment (e.g. by MDP) we try to identify
the conditions sufficient for learning. Towards this aim, we propose to consider
only environments in which, after any arbitrary finite sequence of actions, the
best value is still achievable. The performance criterion here is asymptotic aver-
age reward. Thus we consider such environments for which there exists a policy
whose asymptotic average reward exists and upper-bounds asymptotic average
reward of any other policy. Moreover, the same property should hold after any
finite sequence of actions has been taken (no traps).

Yet this property in itself is not sufficient for identifying optimal behavior. We
require further that, from any sequence of k actions, it is possible to return to the
optimal level of reward in o(k) steps. (The above conditions will be formulated
in a probabilistic form.) Environments which possess this property are called
value-stable.

We show that for any countable class of value-stable environments there exists
a policy which achieves best possible value in any of the environments from
the class (i.e. is self-optimizing for this class). We also show that strong value-
stability is in a certain sense necessary.

We also consider examples of environmentswhich possess strong value-stability.
In particular, any ergodic MDP can be easily shown to have this property. A
mixing-type condition which implies value-stability is also demonstrated. Finally,
we provide a construction allowing to build examples of value-stable environments

336 D. Ryabko and M. Hutter

which are not isomorphic to a finite POMDP, thus demonstrating that the class
of value-stable environments is quite general.

It is important in our argument that the class of environments for which we
seek a self-optimizing policy is countable, although the class of all value-stable
environments is uncountable. To find a set of conditions necessary and sufficient
for learning which do not rely on countability of the class is yet an open problem.
However, from a computational perspective countable classes are sufficiently
large (e.g. the class of all computable probability measures is countable).

Contents. The paper is organized as follows. Section 2 introduces necessary
notation of the agent framework. In Section 3 we define and explain the notion
of value-stability, which is central in the paper. Section 4 presents the theo-
rem about self-optimizing policies for classes of value-stable environments, and
illustrates the applicability of the theorem by providing examples of strongly
value-stable environments. In Section 5 we discuss necessity of the conditions
of the main theorem. Section 6 provides some discussion of the results and an
outlook to future research. The formal proof of the main theorem is given in the
appendix, while Section 4 contains only intuitive explanations.

2 Notation and Definitions

We essentially follow the notation of [Hut02, Hut05].

Strings and probabilities. We use letters i,k,l,m,n∈IN for natural numbers,
and denote the cardinality of sets S by #S. We write X ∗ for the set of fi-
nite strings over some alphabet X , and X∞ for the set of infinite sequences.
For a string x∈X ∗ of length (x) =n we write x1x2...xn with xt ∈X and fur-
ther abbreviate xk:n :=xkxk+1...xn−1xn and x<n :=x1...xn−1. Finally, we define
xk..n :=xk+...+xn, provided elements of X can be added.

We assume that sequence ω=ω1:∞∈X∞ is sampled from the “true” probabil-
ity measure μ, i.e. P[ω1:n=x1:n]=μ(x1:n). We denote expectations w.r.t. μ by E,
i.e. for a function f :Xn→IR, E[f]=E[f(ω1:n)]=

∑
x1:n

μ(x1:n)f(x1:n). When we
use probabilities and expectations with respect to other measures we make the
notation explicit, e.g. Eν is the expectation with respect to ν. Measures ν1 and
ν2 are called singular if there exists a set A such that ν1(A)=0 and ν2(A)=1.

The agent framework is general enough to allow modelling nearly any kind
of (intelligent) system [RN95]. In cycle k, an agent performs action yk∈Y (out-
put) which results in observation ok ∈O and reward rk ∈R, followed by cycle
k+1 and so on. We assume that the action space Y, the observation space O,
and the reward space R⊂ IR are finite, w.l.g. R= {0,...,rmax}. We abbreviate
zk := ykrkok ∈Z :=Y×R×O and xk = rkok ∈X :=R×O. An agent is identified
with a (probabilistic) policy π. Given history z<k, the probability that agent π
acts yk in cycle k is (by definition) π(yk|z<k). Thereafter, environment μ pro-
vides (probabilistic) reward rk and observation ok, i.e. the probability that the
agent perceives xk is (by definition) μ(xk|z<kyk). Note that policy and environ-
ment are allowed to depend on the complete history. We do not make any MDP

Asymptotic Learnability of Reinforcement Problems 337

or POMDP assumption here, and we don’t talk about states of the environ-
ment, only about observations. Each (policy,environment) pair (π,μ) generates
an I/O sequence zπμ

1 zπμ
2 Mathematically, history zπμ

1:k is a random variable
with probability

P[zπμ
1:k = z1:k] = π(y1) · μ(x1|y1) · ... · π(yk|z<k) · μ(xk|z<kyk)

Since value maximizing policies can always be chosen deterministic, there is no
real need to consider probabilistic policies, and henceforth we consider deter-
ministic policies p. We assume that μ∈C is the true, but unknown, environment,
and ν∈C a generic environment.

3 Setup

For an environment ν and a policy p define random variables (lower and upper
average value)

V (ν, p) := lim sup
m

{ 1
mrpν

1..m

}
and V (ν, p) := lim inf

m

{ 1
mrpν

1..m

}
where r1..m :=r1+...+rm. If there exists a constant V such that

V (ν, p) = V (ν, p) = V a.s.

then we say that the limiting average value exists and denote it by V (ν,p)=:V .
An environment ν is explorable if there exists a policy pν such that V (ν,pν)

exists and V (ν,p)≤V (ν,pν) with probability 1 for every policy p. In this case
define V ∗

ν :=V (ν,pν).
A policy p is self-optimizing for a set of environments C if V (ν,p) = V ∗

ν for
every ν∈C.

Definition 1 (value-stable environments). An explorable environment ν
is (strongly) value-stable if there exist a sequence of numbers rν

i ∈ [0,rmax]
and two functions dν(k,ε) and ϕν(n,ε) such that 1

nr
ν
1..n → V ∗

ν , dν(k,ε) = o(k),∑∞
n=1ϕν(n,ε)<∞ for every fixed ε, and for every k and every history z<k there

exists a policy p=p
z<k
ν such that

P
(
rν
k..k+n − rpν

k..k+n > dν(k, ε) + nε | z<k

)
≤ ϕν(n, ε). (1)

First of all, this condition means that the strong law of large numbers for re-
wards holds uniformly over histories z<k; the numbers rν

i here can be thought
of as expected rewards of an optimal policy. Furthermore, the environment is
“forgiving” in the following sense: from any (bad) sequence of k actions it is
possible (knowing the environment) to recover up to o(k) reward loss; to recover
means to reach the level of reward obtained by the optimal policy which from
the beginning was taking only optimal actions. That is, suppose that a person A
has made k possibly suboptimal actions and after that “realized” what the true
environment was and how to act optimally in it. Suppose that a person B was

338 D. Ryabko and M. Hutter

from the beginning taking only optimal actions. We want to compare the perfor-
mance of A and B on first n steps after the step k. An environment is strongly
value stable if A can catch up with B except for o(k) gain. The numbers rν

i can
be thought of as expected rewards of B; A can catch up with B up to the reward
loss dν(k,ε) with probability ϕν(n,ε), where the latter does not depend on past
actions and observations (the law of large numbers holds uniformly).

In the next section after presenting the main theorem we consider examples
of families of strongly-values stable environments.

4 Main Results

In this section we present the main self-optimizingness result along with an
informal explanation of its proof, and illustrate the applicability of this result
with examples of classes of value-stable environments.

Theorem 2 (value-stable⇒self-optimizing). For any countable class C of
strongly value-stable environments, there exists a policy which is self-optimizing
for C.

A formal proof is given in the appendix; here we give some intuitive justification.
Suppose that all environments in C are deterministic. We will construct a self-
optimizing policy p as follows: Let νt be the first environment in C. The algorithm
assumes that the true environment is νt and tries to get ε-close to its optimal
value for some (small) ε. This is called an exploitation part. If it succeeds, it does
some exploration as follows. It picks the first environment νe which has higher
average asymptotic value than νt (V ∗

νe >V ∗
νt) and tries to get ε-close to this value

acting optimally under νe. If it can not get close to the νe-optimal value then νe is
not the true environment, and the next environment can be picked for exploration
(here we call “exploration” successive attempts to exploit an environment which
differs from the current hypothesis about the true environment and has a higher
average reward). If it can, then it switches to exploitation of νt, exploits it until
it is ε′-close to V ∗

νt , ε′<ε and switches to νe again this time trying to get ε′-
close to Vνe ; and so on. This can happen only a finite number of times if the
true environment is νt, since V ∗

νt <V ∗
νe . Thus after exploration either νt or νe is

found to be inconsistent with the current history. If it is νe then just the next
environment νe such that V ∗

νe >V ∗
νt is picked for exploration. If it is νt then the

first consistent environment is picked for exploitation (and denoted νt). This in
turn can happen only a finite number of times before the true environment ν is
picked as νt. After this, the algorithm still continues its exploration attempts,
but can always keep within εk → 0 of the optimal value. This is ensured by
d(k)=o(k).

The probabilistic case is somewhat more complicated since we can not say
whether an environment is “consistent” with the current history. Instead we test
each environment for consistency as follows. Let ξ be a mixture of all environ-
ments in C. Observe that together with some fixed policy each environment μ
can be considered as a measure on Z∞. Moreover, it can be shown that (for any

Asymptotic Learnability of Reinforcement Problems 339

fixed policy) the ratio ν(z<n)
ξ(z<n) is bounded away from zero if ν is the true environ-

ment μ and tends to zero if ν is singular with μ (in fact, here singularity is a
probabilistic analogue of inconsistency). The exploration part of the algorithm
ensures that at least one of the environments νt and νe is singular with ν on
the current history, and a succession of tests ν(z<n)

ξ(z<n) ≥αs with αs→0 is used to
exclude such environments from consideration.

The next proposition provides some conditions on mixing rates which are
sufficient for value-stability; we do not intend to provide sharp conditions on
mixing rates but rather to illustrate the relation of value-stability with mixing
conditions.

We say that a stochastic process hk, k∈IN satisfies strong α-mixing conditions
with coefficients α(k) if (see e.g. [Bos96])

sup
n∈IN

sup
B∈σ(h1,...,hn),C∈σ(hn+k,...)

|P(B ∩ C)−P(B)P(C)| ≤ α(k),

where σ() stands for the sigma-algebra generated by the random variables in
brackets. Loosely speaking, mixing coefficients α reflect the speed with which
the process “forgets” about its past.

Proposition 3 (mixing conditions). Suppose that an explorable environment
ν is such that there exist a sequence of numbers rν

i and a function d(k) such that
1
nr

ν
1..n→V ∗

ν , d(k)= o(k), and for each z<k there exists a policy p such that the
sequence rpν

i satisfies strong α-mixing conditions with coefficients α(k) = 1
k1+ε

for some ε>0 and

rν
k..k+n −E

(
rpν
k..k+n | z<k

)
≤ d(k)

for any n. Then ν is value-stable.

Proof. Using the union bound we obtain

P
(
rν
k..k+n − rpν

k..k+n > d(k) + nε
)

≤ I
(
rν
k..k+n −E rpν

k..k+n > d(k)
)

+ P
(∣∣rpν

k..k+n −E rpν
k..k+n

∣∣ > nε
)
.

The first term equals 0 by assumption and the second term for each ε can be
shown to be summable using [Bos96, Thm.1.3]: For a sequence of uniformly
bounded zero-mean random variables ri satisfying strong α-mixing conditions
the following bound holds true for any integer q∈ [1,n/2]:

P (|r1..n| > nε) ≤ ce−ε2q/c + cqα

(
n

2q

)
for some constant c; in our case we just set q=n

ε
2+ε . ��

(PO)MDPs. Applicability of Theorem 2 and Proposition 3 can be illustrated
on (PO)MDPs. We note that self-optimizing policies for (uncountable) classes of
finite ergodic MDPs and POMDPs are known [BT99, EDKM05]; the aim of the
present section is to show that value-stability is a weaker requirement than the
requirements of these models, and also to illustrate applicability of our results.

340 D. Ryabko and M. Hutter

We call μ a (stationary) Markov decision process (MDP) if the probability of
perceiving xk∈X , given history z<kyk only depends on yk∈Y and xk−1. In this
case xk ∈ X is called a state, X the state space. An MDP μ is called ergodic
if there exists a policy under which every state is visited infinitely often with
probability 1. An MDP with a stationary policy forms a Markov chain.

An environment is called a (finite) partially observable MDP (POMDP) if there
is a sequence of random variables sk taking values in a finite space S called the
state space, such that xk depends only on sk and yk, and sk+1 is independent of
s<k given sk. Abusing notation the sequence s1:k is called the underlying Markov
chain. A POMDP is called ergodic if there exists a policy such that the underlying
Markov chain visits each state infinitely often with probability 1.

In particular, any ergodic POMDP ν satisfies strong α-mixing conditions with
coefficients decaying exponentially fast in case there is a set H ⊂R such that
ν(ri∈H)=1 and ν(ri =r|si =s,yi =y) �=0 for each y∈Y,s∈S,r∈H,i∈IN . Thus
for any such POMDP ν we can use Proposition 3 with d(k,ε) a constant function
to show that ν is strongly value-stable:

Corollary 4 (POMDP⇒value-stable). Suppose that a POMDP ν is ergodic
and there exists a set H⊂R such that ν(ri∈H)=1 and ν(ri =r|si =s,yi =y) �=0
for each y ∈ Y,h ∈S,r ∈H, where S is the finite state space of the underlying
Markov chain. Then ν is strongly value-stable.

However, it is illustrative to obtain this result for MDPs directly, and in a slightly
stronger form.

Proposition 5 (MDP⇒value-stable). Any finite-state ergodic MDP ν is a
strongly value-stable environment.

Proof. Let d(k,ε)=0. Denote by μ the true environment, let z<k be the current
history and let the current state (the observation xk) of the environment be
a∈X , where X is the set of all possible states. Observe that for an MDP there
is an optimal policy which depends only on the current state. Moreover, such a
policy is optimal for any history. Let pμ be such a policy. Let rμ

i be the expected
reward of pμ on step i. Let l(a,b)=min{n :xk+n = b|xk =a}. By ergodicity of μ
there exists a policy p for which El(b,a) is finite (and does not depend on k). A
policy p needs to get from the state b to one of the states visited by an optimal
policy, and then acts according to pμ. Let f(n) := nrmax

logn . We have

P
(∣∣rμ

k..k+n − rpμ
k..k+n

∣∣ > nε
)
≤ sup

a∈X
P
(∣∣E (rpμμ

k..k+n|xk = a
)
− rpμ

k..k+n

∣∣ > nε)
)

≤ sup
a,b∈X

P(l(a, b) > f(n)/rmax)

+ sup
a,b∈X

P
(∣∣∣E (rpμμ

k..k+n|xk = a
)
− r

pμμ

k+f(n)..k+n

∣∣∣ > nε− f(n)
∣∣∣xk+f(n) = a

)
≤ sup

a,b∈X
P(l(a, b) > f(n)/rmax)

+ sup
a∈X

P
(∣∣E (rpμμ

k..k+n|xk = a
)
− r

pμμ
k..k+n

∣∣ > nε− 2f(n)
∣∣∣xk = a

)
.

Asymptotic Learnability of Reinforcement Problems 341

In the last term we have the deviation of the reward attained by the opti-
mal policy from its expectation. Clearly, both terms are bounded exponentially
in n. ��

In the examples above the function d(k,ε) is a constant and ϕ(n,ε) decays expo-
nentially fast. This suggests that the class of value-stable environments stretches
beyond finite (PO)MDPs. We illustrate this guess by the construction that
follows.

An example of a value-stable environment: Infinitely armed bandit. Next
we present a construction of environments which can not be modelled as finite
POMDPs but are value-stable. Consider the following environment ν. There is
a countable family C′ = {ζi : i ∈ IN} of arms, that is, sources generating i.i.d.
rewards 0 and 1 (and, say, empty observations) with some probability δi of the
reward being 1. The action space Y consists of three actions Y={g,u,d}. To get
the next reward from the current arm ζi an agent can use the action g. At the
beginning the current arm is ζ0 and then the agent can move between arms as
follows: it can move one arm “up” using the action u or move “down” to the
first environment using the action d. The reward for actions u and d is 0.

Clearly, ν is a POMDP with countably infinite number of states in the under-
lying Markov chain, which (in general) is not isomorphic to a finite POMDP.

Claim. The environment ν just constructed is value-stable.

Proof. Let δ=supi∈INδi. Clearly, V (ν,p′)≤ δ with probability 1 for any policy
p′ . A policy p which, knowing all the probabilities δi, achieves V (ν,p)=V (ν,p)=
δ=:V ∗

ν a.s., can be easily constructed. Indeed, find a sequence ζ′j , j∈IN , where
for each j there is i=: ij such that ζ′j = ζi, satisfying limj→∞δij = δ. The policy
p should carefully exploit one by one the arms ζj , staying with each arm long
enough to ensure that the average reward is close to the expected reward with εj

probability, where εj quickly tends to 0, and so that switching between arms has
a negligible impact on the average reward. Thus ν can be shown to be explorable.
Moreover, a policy p just sketched can be made independent on (observation and)
rewards.

Furthermore, one can modify the policy p (possibly allowing it to exploit each
arm longer) so that on each time step t (from some t on) we have j(t)≤

√
t,

where j(t) is the number of the current arm on step t. Thus, after any actions-
perceptions history z<k one needs about

√
k actions (one action u and enough

actions d) to catch up with p. So, (1) can be shown to hold with d(k,ε)=
√
k,

ri the expected reward of p on step i (since p is independent of rewards, rpν
i are

independent), and the rates ϕ(n,ε) exponential in n. ��

In the above construction we can also allow the action d to bring the agent d(i)<i
steps down, where i is the number of the current environment ζ, according to
some (possibly randomized) function d(i), thus changing the function dν(k,ε)
and possibly making it non-constant in ε and as close as desirable to linear.

342 D. Ryabko and M. Hutter

5 Necessity of Value-Stability

Now we turn to the question of how tight the conditions of strong value-stability
are. The following proposition shows that the requirement d(k,ε) = o(k) in (1)
can not be relaxed.

Proposition 6 (necessity of d(k,ε)=o(k)). There exists a countable family
of deterministic explorable environments C such that

– for any ν∈C for any sequence of actions y<k there exists a policy p such that

rν
n..k+n = rpν

k..k+n for all n ≥ k,

where rν
i are the rewards attained by an optimal policy pν (which from the

beginning was acting optimally), but
– for any policy p there exists an environment ν∈C such that V (ν,p)<V ∗

ν .

Clearly, each environment from such a class C satisfies the value stability condi-
tions with ϕ(n,ε)≡0 except d(k,ε)=k �=o(k).

Proof. There are two possible actions yi ∈ {a,b}, three possible rewards ri ∈
{0,1,2} and no observations.

Construct the environment ν0 as follows: if yi =a then ri =1 and if yi=b then
ri =0 for any i∈IN .

For each i let ni denote the number of actions a taken up to step i: ni :=#{j≤
i : yj = a}. For each s> 0 construct the environment νs as follows: ri(a)=1 for
any i, ri(b)=2 if the longest consecutive sequence of action b taken has length
greater than ni and ni≥s; otherwise ri(b)=0.

Suppose that there exists a policy p such that V (νi,p)=V ∗
νi

for each i>0 and
let the true environment be ν0. By assumption, for each s there exists such n
that

#{i ≤ n : yi = b, ri = 0} ≥ s > #{i ≤ n : yi = a, ri = 1}

which implies V (ν0,p)≤1/2<1=V ∗
ν0

. ��

It is also easy to show that the uniformity of convergence in (1) can not be
dropped. That is, if in the definition of value-stability we allow the function
ϕ(n,ε) to depend additionally on the past history z<k then Theorem 2 does not
hold. This can be shown with the same example as constructed in the proof of
Proposition 6, letting d(k,ε)≡0 but instead allowing ϕ(n,ε,z<k) to take values 0
and 1 according to the number of actions a taken, achieving the same behaviour
as in the example provided in the last proof.

Finally, we show that the requirement that the class C to be learnt is countable
can not be easily withdrawn. Indeed, consider the following simple class of envi-
ronments. An environment is called passive if the observations and rewards are
independent of actions. Sequence prediction task is a well-studied (and perhaps
the only reasonable) class of passive environments: in this task an agent gets
the reward 1 if yi =oi+1 and the reward 0 otherwise. Clearly, any deterministic

Asymptotic Learnability of Reinforcement Problems 343

passive environment ν is strongly value-stable with dν(k,ε)≡1, ϕν(n,ε)≡0 and
rν
i =1 for all i. Obviously, the class of all deterministic passive environments is

not countable. Since for every policy p there is an environment on which p errs
exactly on each step,

Claim. The class of all deterministic passive environments can not be learned.

6 Discussion

We have proposed a set of conditions on environments, called value-stability, such
that any countable class of value-stable environments admits a self-optimizing
policy. It was also shown that these conditions are in a certain sense tight.
The class of all value-stable environments includes ergodic MDPs, certain class
of finite POMDPs, passive environments, and (provably) other and more en-
vironments. So the novel concept of value-stability allows to characterize self-
optimizing environment classes, and proving value-stability is typically much
easier than proving self-optimizingness directly.

We considered only countable environment classes C. From a computational
perspective such classes are sufficiently large (e.g. the class of all computable
probability measures is countable). On the other hand, countability excludes
continuously parameterized families (like all ergodic MDPs), common in statis-
tical practice. So perhaps the main open problem is to find under which condi-
tions the requirement of countability of the class can be lifted. Ideally, we would
like to have some necessary and sufficient conditions such that the class of all
environments that satisfy this condition admits a self-optimizing policy.

Another question concerns the uniformity of forgetfulness of the environment.
Currently in the definition of value-stability (1) we have the function ϕ(n,ε)
which is the same for all histories z<k, that is, both for all actions histories y<k

and observations-rewards histories x<k. Probably it is possible to differentiate
between two types of forgetfulness, one for actions and one for perceptions. In
particular, any countable class of passive environments (i.e. such that perceptions
are independent of actions) is learnable, suggesting that uniform forgetfulness in
perceptions may not be necessary.

References

[Bos96] D. Bosq. Nonparametric Statistics for Stochastic Processes. Springer,
1996.

[BT99] R. I. Brafman and M. Tennenholtz. A general polynomial time algorithm
for near-optimal reinforcement learning. In Proc. 17th International Joint
Conference on Artificial Intelligence (IJCAI-01), pages 734–739, 1999.

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, 2006. in preparation.

[CS04] I. Csiszar and P.C. Shields. Notes on information theory and statistics.
In Foundations and Trends in Communications and Information Theory,
2004.

344 D. Ryabko and M. Hutter

[Doo53] J. L. Doob. Stochastic Processes. John Wiley & Sons, New York, 1953.
[EDKM05] E. Even-Dar, S. M. Kakade, and Y. Mansour. Reinforcement learning in

POMDPs without resets. In IJCAI, pages 690–695, 2005.
[HP04] M. Hutter and J. Poland. Prediction with expert advice by following the

perturbed leader for general weights. In Proc. 15th International Conf.
on Algorithmic Learning Theory (ALT’04), volume 3244 of LNAI, pages
279–293, Padova, 2004. Springer, Berlin.

[Hut02] M. Hutter. Self-optimizing and Pareto-optimal policies in general envi-
ronments based on Bayes-mixtures. In Proc. 15th Annual Conference on
Computational Learning Theory (COLT 2002), Lecture Notes in Artificial
Intelligence, pages 364–379, Sydney, Australia, July 2002. Springer.

[Hut03] M. Hutter. Optimality of universal Bayesian prediction for general loss
and alphabet. Journal of Machine Learning Research, 4:971–1000, 2003.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Springer, Berlin, 2005. 300 pages,
http://www.idsia.ch/∼ marcus/ai/uaibook.htm.

[KV86] P. R. Kumar and P. P. Varaiya. Stochastic Systems: Estimation, Identifi-
cation, and Adaptive Control. Prentice Hall, Englewood Cliffs, NJ, 1986.

[PH05] J. Poland and M. Hutter. Defensive universal learning with experts. In
Proc. 16th International Conf. on Algorithmic Learning Theory (ALT’05),
volume 3734 of LNAI, pages 356–370, Singapore, 2005. Springer, Berlin.

[PH06] J. Poland and M. Hutter. Universal learning of repeated matrix games.
In Conference Benelearn’06 and GTDT workshop at AAMAS’06, Ghent,
2006.

[dFM04] D. Pucci de Farias and N. Megiddo. How to combine expert (and
novice) advice when actions impact the environment? In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural In-
formation Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[RN95] S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach.
Prentice-Hall, Englewood Cliffs, 1995.

[SB98] R. Sutton and A. Barto. Reinforcement learning: An introduction. Cam-
bridge, MA, MIT Press, 1998.

A Proof of Theorem 2

A self-optimizing policy p will be constructed as follows. On each step we will
have two polices: pt which exploits and pe which explores; for each i the policy
p either takes an action according to pt (p(z<i) = pt(z<i)) or according to pe

(p(z<i)=pe(z<i)), as will be specified below. When the policy p has been defined
up to a step k, each environment μ, endowed with this policy, can be considered
as a measure on Zk. We assume this meaning when we use environments as
measures on Zk (e.g. μ(z<i)).

In the algorithm below, i denotes the number of the current step in the se-
quence of actions-observations. Let n=1, s=1, and jt =je =0. Let also αs =2−s

for s∈IN . For each environment ν, find such a sequence of real numbers εν
n that

εν
n→0 and

∑∞
n=1ϕν(n,εν

n)≤∞.

Asymptotic Learnability of Reinforcement Problems 345

Let ı : IN →C be such a numbering that each ν ∈ C has infinitely many in-
dices.For all i>1 define a measure ξ as follows

ξ(z<i)=
∑
ν∈C

wνν(z<i),

where wν ∈R are (any) such numbers that
∑

νwν =1 and wν >0 for all ν∈C.
Define T . On each step i let

T ≡ Ti :=
{
ν ∈ C :

ν(z<i)
ξ(z<i)

≥ αs

}
Define νt. Set νt to be the first environment in T with index greater than ı(jt).
In case this is impossible (that is, if T is empty), increment s, (re)define T and
try again. Increment jt.

Define νe. Set νe to be the first environment with index greater than ı(je) such
that V ∗

νe >V ∗
νt and νe(z<k)>0, if such an environment exists. Otherwise proceed

one step (according to pt) and try again. Increment je.

Consistency. On each step i (re)define T . If νt /∈T , define νt, increment s and
iterate the infinite loop. (Thus s is incremented only if νt is not in T or if T is
empty.)

Start the infinite loop. Increment n.
Let δ :=(V ∗

νe−V ∗
νt)/2. Let ε :=ενt

n . If ε<δ set δ=ε. Let h=je.

Prepare for exploration.
Increment h. The index h is incremented with each next attempt of exploring

νe. Each attempt will be at least h steps in length.
Let pt =py<i

νt and set p=pt.
Let ih be the current step. Find k1 such that

ih
k1

V ∗
νt ≤ ε/8 (2)

Find k2>2ih such that for all m>k2∣∣∣∣ 1
m− ih

rνt

ih+1..m − V ∗
νt

∣∣∣∣ ≤ ε/8. (3)

Find k3 such that
hrmax/k3<ε/8. (4)

Find k4 such that for all m>k4

1
m
dνe(m, ε/4) ≤ ε/8,

1
m
dνt(m, ε/8) ≤ ε/8 and

1
m
dνt(ih, ε/8) ≤ ε/8. (5)

Moreover, it is always possible to find such k>max{k1,k2,k3,k4} that

1
2k

rνe

k..3k ≥
1
2k

rνt

k..3k + δ. (6)

Iterate up to the step k.

346 D. Ryabko and M. Hutter

Exploration. Set pe =py<n

νe . Iterate h steps according to p=pe. Iterate further
until either of the following conditions breaks

(i)
∣∣rνe

k..i−rpν
k..i

∣∣<(i−k)ε/4+dνe(k,ε/4),
(ii) i<3k.

(iii) νe∈T .

Observe that either (i) or (ii) is necessarily broken.
If on some step νt is excluded from T then the infinite loop is iterated. If after

exploration νe is not in T then redefine νe and iterate the infinite loop. If
both νt and νe are still in T then return to “Prepare for exploration” (otherwise
the loop is iterated with either νt or νe changed).
End of the infinite loop and the algorithm.

Let us show that with probability 1 the “Exploration” part is iterated only a
finite number of times in a row with the same νt and νe.

Suppose the contrary, that is, suppose that (with some non-zero probabil-
ity) the “Exploration” part is iterated infinitely often while νt,νe ∈T . Observe
that (1) implies that the νe-probability that (i) breaks is not greater than ϕνe

(i−k,ε/4); hence by Borel-Cantelli lemma the event that (i) breaks infinitely
often has probability 0 under νe.

Suppose that (i) holds almost every time. Then (ii) should be broken except
for a finite number of times. We can use (2), (3), (5) and (6) to show that with
probability at least 1−ϕνt(k−ih,ε/4) under νt we have 1

3k r
pνt

1..3k≥V ∗
νt+ε/2. Again

using Borel-Cantelli lemma and k>2ih we obtain that the event that (ii) breaks
infinitely often has probability 0 under νt.

Thus (at least) one of the environments νt and νe is singular with respect to
the true environment ν given the described policy and current history. Denote
this environment by ν′. It is known (see e.g. [CS04, Thm.26]) that if measures
μ and ν are mutually singular then μ(x1,...,xn)

ν(x1,...,xn)→∞ μ-a.s. Thus

ν′(z<i)
ν(z<i)

→ 0 ν-a.s. (7)

Observe that (by definition of ξ) ν(z<i)
ξ(z<i)

is bounded. Hence using (7) we can see
that

ν′(z<i)
ξ(z<i)

→ 0 ν-a.s.

Since s and αs are not changed during the exploration phase this implies that on
some step ν′ will be excluded from T according to the “consistency” condition,
which contradicts the assumption. Thus the “Exploration” part is iterated only
a finite number of times in a row with the same νt and νe.

Observe that s is incremented only a finite number of times since ν′(z<i)
ξ(z<i)

is
bounded away from 0 where ν′ is either the true environment ν or any environ-
ment from C which is equivalent to ν on the current history. The latter follows

Asymptotic Learnability of Reinforcement Problems 347

from the fact that ξ(z<i)
ν(z<i)

is a submartingale with bounded expectation, and
hence, by the submartingale convergence theorem (see e.g. [Doo53]) converges
with ν-probability 1.

Let us show that from some step on ν (or an environment equivalent to it) is
always in T and selected as νt. Consider the environment νt on some step i. If
V ∗

νt >V ∗
ν then νt will be excluded from T since on any optimal for νt sequence

of actions (policy) measures ν and νt are singular. If V ∗
νt <V ∗

ν than νe will be
equal to ν at some point, and, after this happens sufficient number of times, νt

will be excluded from T by the “exploration” part of the algorithm, s will be
decremented and ν will be included into T . Finally, if V ∗

νt =V ∗
ν then either the

optimal value V ∗
ν is (asymptotically) attained by the policy pt of the algorithm,

or (if pνt is suboptimal for ν) 1
i r

pνt

1..i <V ∗
νt−ε infinitely often for some ε, which

has probability 0 under νt and consequently νt is excluded from T .
Thus, the exploration part ensures that all environments not equivalent to ν

with indices smaller than ı(ν) are removed from T and so from some step on νt

is equal to (an environment equivalent to) the true environment ν.
We have shown in the “Exploration” part that n→∞, and so ενt

n →0. Finally,
using the same argument as before (Borel-Cantelli lemma, (i) and the defini-
tion of k) we can show that in the “exploration” and “prepare for exploration”
parts of the algorithm the average value is within ενt

n of V ∗
νt provided the true

environment is (equivalent to) νt. �

Probabilistic Generalization of Simple
Grammars and Its Application to

Reinforcement Learning

Takeshi Shibata1, Ryo Yoshinaka2, and Takashi Chikayama1

1 Department of Electronic Engineering, the University of Tokyo
{shibata, chikayama}@logos.t.u-tokyo.ac.jp

2 Graduate School of Interdisciplinary Information Studies, the University of Tokyo
ry@iii.u-tokyo.ac.jp

Abstract. Recently, some non-regular subclasses of context-free gram-
mars have been found to be efficiently learnable from positive data. In
order to use these efficient algorithms to infer probabilistic languages,
one must take into account not only equivalences between languages but
also probabilistic generalities of grammars. The probabilistic generality
of a grammar G is the class of the probabilistic languages generated by
probabilistic grammars constructed on G. We introduce a subclass of sim-
ple grammars (SGs), referred as to unifiable simple grammars (USGs),
which is a superclass of an efficiently learnable class, right-unique simple
grammars (RSGs). We show that the class of RSGs is unifiable within
the class of USGs, whereas SGs and RSGs are not unifiable within the
class of SGs and RSGs, respectively. We also introduce simple context-
free decision processes, which are a natural extension of finite Markov
decision processes and intuitively may be thought of a Markov decision
process with stacks. We propose a reinforcement learning method on sim-
ple context-free decision processes, as an application of the learning and
unification algorithm for RSGs from positive data.

1 Introduction

In grammatical inference in the limit from positive data, there is a trade-off
between the richness of the language class and the efficiency of the algorithm.
Although some general conditions on learning grammars from only positive data
have been found [1, 2] and are well-known, these conditions only establishes the
existence of a learning algorithm, and does not say anything about its efficiency.
Preceding research has proposed several efficient algorithms that identify some
subclasses of context-free languages [2, 6]. In particular, recent studies [10, 12, 13]
have found some nonregular context-free languages that are efficiently learnable
from positive data. Yoshinaka has proposed a polynomial-time algorithm that
learns a subclass of context-free grammars, called right-unique simple grammars
(RSGs) [13], which is a superclass of very simple grammars (VSGs) found as a
efficiently learnable class by Yokomori [12].

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 348–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Probabilistic Generalization of SGs and Its Application 349

Both the classes of RSGs and VSGs are subclasses of simple grammars (SGs).
In this paper, we consider the properties and the unification methods of the
subclasses of probabilistic simple grammars. In learning these subclasses from
positive examples, since if the grammar is not probabilistic, the problem becomes
the classical problem of grammatical inference from positive data, it may seem
that there is no problem: first infer the target grammar from positive data,
and then determine the probabilities of production rules by using a statistical
method. However, this solution is not sufficient because although the inferred
grammar generates the correct language, there is not necessarily some probability
assignment of production rules on the inferred grammar such that it generates
the correct probabilistic language. For example, let us consider CFGs G and G′

whose rules are {S → aS|b} and {S′ → aA′|b, A′ → aA′|b} respectively. Then it
is obviously impossible for G to generate the same probabilistic language as G′

if Pr(S′ → aA′) �= Pr(A′ → aA′), although L(G) = L(G′).
In Section 3, we introduce the notion of the probabilistic generality of simple

grammars (SGs), where the class of SGs is a superclass of RSGs and VSGs.
Probabilistic generality of a grammar is defined as the set of the probabilistic
languages generated by probabilistic grammars that are obtained by assigning
probabilities to the production rules of the grammar. We show that, for the
class of SGs and the class of RSGs, there exist two grammars whose languages
are equivalent, and for which the probabilistic generality of any grammar in the
same class is not larger than both of them.

In Section 4, a new subclass of SGs called unifiable simple grammars (USGs)
is introduced. The class of USGs is a superclass of RSGs. We show that for any
two USGs that generate the same language, there is a USG whose probabilistic
generality is larger than the two. This implies that all RSGs whose languages
are equivalent can be unified to one USG, since the number of those RSGs is
finite.

In Section 5, we give an application for which the results of this paper are
required. We introduce context-free decision processes, which are an extension of
finite Markov decision processes (MDPs), and introduce a modified Q-learning al-
gorithm for their optimisation. A simple context-free decision process intuitively
may be thought of a finite MDP with stacks. The class of RSGs is sufficiently
large so that context-free decision processes based on RSGs include all episodic
finite MDPs. We use Yoshinaka’s learning method to output all the minimal
grammars that can generate the histories, then construct a USG by unifying the
output RSGs, and use the extended Q-learning for learning optimal decisions.

2 Preliminaries

First, we outline some standard notation and definitions.
A context-free grammar is denoted by 〈V,Σ,R, S〉, where V is a finite set of

nonterminal symbols, Σ is a finite set of terminal symbols, R ⊂ V × (V ∪Σ)∗ is a
finite set of production rules and S ∈ V is the start symbol. Let G = 〈V,Σ,R, S〉
be a CFG. We write XAZ⇒GXY Z iff A → Y ∈ R and X,Z ∈ (V ∪ Σ)∗,

350 T. Shibata, R. Yoshinaka, and T. Chikayama

and ⇒∗
G denotes the reflective and transitive closure of ⇒G. When G is clearly

identified, we write simply ⇒ instead of ⇒G. G is said to be reduced iff for all
A ∈ V , there are some x, y, z ∈ Σ∗ such that S

∗⇒ xAz
∗⇒ xyz. The language

of G, L(G),is defined as {x ∈ Σ∗ | S ∗⇒ x}. Let L(G,X) = {x ∈ Σ∗ | X ∗⇒ x},
where X ∈ (V ∪Σ)∗. When G is clearly identified, we write simply L(X) instead
of L(G,X). For A ∈ V , let RA indicate {A→ X ∈ R}.

Let ε denote the empty sequence and |x| denote the length of a sequence
x. For a set V , let |V | denote the number of the elements in V . For a CFG
G = 〈V,Σ,R, S〉, let |G| denote

∑
A→X∈R |AX |.

Hereafter, let terminal symbols and nonterminal symbols be denoted by a, b, c,
· · · and A,B,C, · · · respectively, and finite sequences of terminals symbols and
of nonterminal symbols be denoted by · · · , x, y, z and α, β, γ, · · · respectively.

Subclasses of CFGs we discuss in this paper are defined below.

Definition 1. A CFG G = 〈V,Σ,R, S〉 is called a simple grammar (SG) iff G
is Greibach normal form, and

A→ aα ∈ R and A→ aβ ∈ R imply α = β.

An SG G is called a right-unique simple grammar (RSG) iff

A→ aα ∈ R and B → aβ ∈ R imply α = β.

An SG G is called a very simple grammar (VSG) iff

A→ aα ∈ R and B → aβ ∈ R imply α = β and A = B.

An RSG G is normal form iff it is reduced, and for all C ∈ V , A→ aαCβ,B →
a′α′Cβ′ ∈ R implies a = a′, α = α′, β = β′ and C �= S.

CFGs in GNF G = 〈V,Σ,R, S〉 and H = 〈V ′, Σ,R′, S′〉 are equivalent modulo
renaming nonterminals iff there is a bijection φ : V → V ′ such that φ(S) = S′,
A → aα ∈ R iff φ(A) → aφ̂(α) ∈ R′ where φ̂ is the unique homomorphic
extension of φ.

While the class of SGs is not learnable in the limit from positive data, for
both the class of VSGs and the class of RSGs, there are the efficient learning
algorithms, which satisfy conservativeness and consistency and output grammars
in polynomial time in the size of the input positive examples.

Those algorithms for VSGs and RSGs are based on the following strategy. Let
C be either the class of VSGs or the class of RSGs. Let positive presentation of
the target grammar in C be s1, s2, · · · , and output grammars be G1, G2, · · · . For
each i-th input of positive data, if si is in L(Gi−1) then Gi := Gi−1, otherwise
Gi := G, where G ∈ C such that {s1, · · · , si} ⊂ L(G) and L(G) is minimal,
namely, ∀G′ ∈ C[L(G′) � L(G) implies {s1, · · · , si} �⊂ L(G′)]. C has finite
thickness, namely, for any finite language D = {s1, . . . , si}, at most finitely
many (modulo renaming nonterminals) grammars G in C generate a language
including D.

A function #G : Σ∗ → {−1, 0, · · · } for G = 〈V,Σ,R, S〉 ∈ C is defined
as #G(ε) = 0, #G(a) = |α| − 1, where A → aα ∈ R for some A ∈ V , and

Probabilistic Generalization of SGs and Its Application 351

#(ax) = #(a) + #(x). Note that #(a) is well-defined due to the definition
of the class C. Since D ⊂ L(G) implies that #G(s) = −1 for all s ∈ D and
#G(t) ≥ 0 for each proper prefix t of s, the number of possible #s for D is finite.
When a possible # is given, it is easy to determine the minimal grammar in
{G ∈ C | #G = #}. The algorithm outputs a minimal grammar among those
minimal grammars.

Although Yoshinaka’s algorithm can decide the inclusion of every two RSGs
G and H in polynomial time in |G| + |H |, since the number of possible #s can
be exponential in |Σ|, those algorithm is also in exponential time in |Σ|.

Let G = 〈V,Σ,R, S〉 be an SG. A probability assignment P on G is a map from
R to [0, 1] such that

∑
r∈RA

P (r) = 1 for all A ∈ V , where RA = {A→ aα ∈ R}.
A probabilistic simple grammar (PSG) is a pair 〈G,P 〉, where P is probability
assignment on an SG G. 〈G,P 〉 is reduced iff G is reduced and P (r) �= 0 for all
r ∈ R.

When G is an SG, every x ∈ L(G) has a unique sequence of production rules
that are used in the left-most derivation of S ∗⇒G x. Let us denote that sequence
by r(G, x, 1), · · · , r(G, x, |x|). Then, the probabilistic language of a PSG 〈G,P 〉,
Pr(· |〈G,P 〉) : Σ∗ → [0, 1], is defined as

Pr(x|〈G,P 〉) =

{∏|x|
i=1 P (r(G, x, i)) if x ∈ L(G),

0 otherwise.

We define similarly that Pr(x|〈G,P 〉, A) =
∏|x|

i=1 P (r(A, x, i)) if x ∈ L(G,A),
otherwise 0, where r(G,A, x, 1) · · · r(G,A, x, |x|) are the sequence of rules used
in the derivation A

∗⇒G x.

3 Probabilistic Generality of Subclasses of Simple
Grammars

Definition 2. The generality of an SG G is defined as

K(G) = {Pr(·|〈G,P 〉)|P is a probability assignment on G}.

G is more general than an SG H iff K(G) ⊂ K(H).

The following lemma establishes requirements for K(G) ⊂ K(H).

Lemma 1. Let G = 〈V,Σ,R, S〉 and H = 〈V ′, Σ,R′, S′〉 be reduced SGs. K(G)⊂
K(H) iff L(G) = L(H) and there is some map ψ : V ′

≥2 → V such that ∀A ∈
V ′
≥2∀x ∈ Σ∗ [S′ ∗⇒H xAα implies S

∗⇒G xψ(A)β], where V ′
≥2 = {A ∈ V ′ |

|R′
A| ≥ 2}.

Definition 3. Let C and D be subclasses of SGs. C is unifiable within D iff for
all G1, G2 ∈ C such that L(G1) = L(G2), there is H ∈ D such that K(G1) ∪
K(G2) ⊂ K(H).

352 T. Shibata, R. Yoshinaka, and T. Chikayama

The main purpose of this paper is to construct an SG G∗ that is more general
than a finite number of given RSGs whose languages are equivalent. However,
neither the class of SGs nor the class of RSGs is unifiable within itself, as we
demonstrate in what follows. In the following, we say that C is unifiable when C
is unifiable within C.
Proposition 1. The class of SGs is not unifiable.

Proof. Let G = 〈V,Σ,R, S〉 and G′ = 〈V ′, Σ,R′, S′〉 be SGs, whose rules are,
respectively,

{S → aAB, A→ aB|b|c, B → aAB|bC1|cC2, C1 → aB|b|c, C2 → aB|b|c} and
{S′→aB′A′, A′→aB′|b|c, B′→aA′B′|bC′

1|cC′
2, C′

1→aB′|b|c, C′
2→aB′|b|c}.

First we show that L(G) = L(G′). G and G′ are isomorphic if we disregard the
rules S → aAB and S → aB′A′. Clearly

L(A) = L(C1) = L(C2) = L(A′) = L(C′
1) = L(C′

2), and L(B) = L(B′).

Moreover, it is not hard to see that for every x ∈ Σ∗ and γ ∈ {A}∗, the following
are equivalent:

– AA
∗⇒G xα with φ(α) = γ for some α ∈ V ∗,

– B
∗⇒G xβ with φ(β) = γ for some β ∈ V ∗,

where φ : V ∗ → {A}∗ is the homomorphism such that φ(A) = φ(C1) = φ(C2) =
A and φ(B) = AA. Therefore, L(AA) = L(B) = L(B′) = L(A′A′), and thus
L(S) = L(S′).

Second, we show that no SG H is more general than both G and G′. Let H =
〈VH , Σ,RH , SH〉 be an SG such that L(H) = L(G) = L(G′). Since a2nb2n+2 ∈
L(G), there are Dn ∈ VH and αn ∈ V ∗

H such that

SH
∗⇒H a2nDnαn

∗⇒ a2nb2n+2

for each n ∈ N. Since VH is finite, we can find m,n ∈ N such that m < n and
Dm = Dn. Let k and E be such that Dm = Dn

∗⇒H bk−1E⇒bk, αm
∗⇒H b2m+2−k

and αn
∗⇒H b2n+2−k. Note that k ≤ 2m + 2 < 2n + 2. Since a2nbk−1cb2n+2−k ∈

L(G) = L(H), we have E → cγ ∈ R and

SH
∗⇒H a2nDnαn

∗⇒ a2nbk−1Eαn⇒a2nbk−1cγαn
∗⇒ a2nbk−1cb2n+2−k.

Since H is an SG, b2n+2−k ∈ L(γαn) ∩ L(αn) implies γ = ε. Therefore, we have

SH
∗⇒H a2nDnαn

∗⇒ a2nbkαn, SH
∗⇒H a2nDnαn

∗⇒ a2nbk−1cαn.

Since k < 2n + 2, αn �= ε. If k = 2j + 1 < 2n + 2, then

S
∗⇒G a2nbkC1B

n−j , S
∗⇒G a2nbk−1cC2B

n−j .

By Lemma 1, H is not more general than G. Similarly, if k = 2j + 2 < 2n + 2,
then H is not more general than G′. ��

Probabilistic Generalization of SGs and Its Application 353

The class of RSGs is also not unifiable. Let us consider the finite language
L = (a|b)(c|d)(e|f) = {ace, acf, ade, adf, bce, bcf, bde, bdf}. In normal form, any
RSG that generates L is equivalent, modulo renaming nonterminals, to either
G = 〈V,Σ,R, S〉 or H = 〈V ′, Σ,R′, S〉, whose rules are, respectively,

{S → aA|bB, A→ cC|dD, B → cC|dD, C → e|f, D → e|f} or
{S → aA0A1|bB0B1, A0 → c|d, B0 → c|d, A1 → e|f, B1 → e|f}.

|RA| = |R′
A′ | = 2 for all A ∈ V and A′ ∈ V ′. S ∗⇒G acC and S

∗⇒G adD,
while S

∗⇒H acA1 and S
∗⇒H adA1. Thus K(G) �⊂ K(H) from Lemma 1. On

the other hand, S ∗⇒G acC and S
∗⇒G bcC, while S

∗⇒H acA1 and S
∗⇒H bcB1.

Thus K(H) �⊂ K(G). It follows that there is no RSG I such that L(I) = L ,
K(G) ⊂ K(I) and K(H) ⊂ K(I) from Lemma 9.

4 A Unifiable Subclass of Simple Grammars

In this section, we introduce unifiable simple grammars (USGs). The class of
USGs is unifiable and is a superclass of the class of RSGs. This implies that the
class of RSGs is unifiable within the class of USGs. This is the main result of
this paper.

Let G = 〈V,Σ,R, S〉 be an SG. Let σG(A) = {a ∈ Σ | A → aα ∈ R} for
A ∈ V . We write A

σ∼ B iff σG(A) = σG(B). σ∼ is an equivalence relation, thus
let A denote the equivalence class containing A, i.e., A = {A′ ∈ V | A′ σ∼ A}.
We also introduce the notation U = {A′ ∈ V | ∃A ∈ U,A′ ∈ A} and A1 · · ·Am =
A1 · · ·Am, where U ⊂ V .

Definition 4. An SG G is a Unifiable Simple Grammar (USG) iff

A = B, A→ aα ∈ R and B → aβ ∈ R imply α = β.

For a USG G = 〈V,Σ,R, S〉, we define a USG G/σ = 〈V/σ,Σ,R/σ, S〉 as

V/σ = {A | A ∈ V }
R/σ = {A→ aB1 . . . Bn | A→ aB1 . . . Bn ∈ R }

USGs G = 〈V,Σ,R, S〉 and H = 〈V ′, Σ,R′, S′〉 are σ-isomorphic iff G/σ and
H/σ are equivalent modulo renaming nonterminals. From the definition of USGs,
G/σ is also a USG and L(G/σ) = L(G).

To show the USGs are unifiable, we define neighbourhood pairs for a USG, and
eliminate them keeping its generality. The intuitive meaning of neighbourhood
pairs can be seen in Lemma 3. For all USGs G and H that have no neighbourhood
pair, L(G) = L(H) implies that G is σ-isomorphic to H (Lemma 7). If G and
H are σ-isomorphic, it is easy to unify them (Lemma 8).

G

L(G) = L(H),
not σ-isomorphic

eliminating
neighbourhood
pairs(Alg.1)

�� Go

σ-isomorphic
��
��
��

H �� Ho

354 T. Shibata, R. Yoshinaka, and T. Chikayama

Definition 5. The upstream of A ∈ V is defined as upG(A) = {B ∈ V | B ∗⇒
xA}, and upG(U) =

⋃
A∈U upG(A) where U ⊂ V .

Let us define W (U1, U2) ⊂ V ∗ as

W (U1, U2) = {α ∈ V ∗ | ∀A ∈ U1[α = α′Aβ imply ∃B ∈ U2[β = Bβ′]]}

Lemma 2. αβ ∈W (U1, U2) iff{
α′, β′ ∈W (U1, U2) if α = α′A, β = Bβ′ and (A,B) ∈ (U1, U2)
α, β ∈ W (U1, U2) otherwise

Definition 6. A pair 〈U1, U2〉 ∈ P(V) × P(V) is called a neighbourhood pair
iff the following conditions hold.

1. U1 ∩ U2 = ∅.
2. ∃A ∈ V (U1 = up(A)).
3. ∃A ∈ V (U2 = A).
4. S �∈ U1.
5. For all A→ aα ∈ R,

– A ∈ U1 implies αB ∈ W (U1, U2) for some B ∈ U2.
– A �∈ U1 implies α ∈ W (U1, U2).

The following Lemma 3 and Lemma 4 can be proven by induction on |x|.
Lemma 3. 〈U1, U2〉 is an neighbourhood pair iff conditions 1, 2 and 3 in Defi-
nition 6, as well as the following condition, hold.

– S
∗⇒ xα implies α ∈ W (U1, U2) for all x.

Definition 7. Let 〈U1, U2〉 be an neighbourhood pair of a USG G = 〈V,Σ,R, S〉.
We define a map φU1,U2 : W (U1, U2) → V ′∗, where V ′ = (V − U1) ∪ (U1 × U2),
by

– φU1,U2(ε) = ε.

– φU1,U2(Aβ) =

{
ABφU1,U2(β′) if A ∈ U1 and β = Bβ′,

AφU1,U2(β) otherwise.

Φ(G, 〈U1, U2〉) denotes the USG obtained by eliminating useless nonterminals
and rules from the USG 〈V ′, Σ,R′, S〉, where

R′ = {A→ aφU1,U2(α) | A→ aα ∈ R and A ∈ V − U1 }
∪ {AB → aφU1,U2(αB) | A→ aα ∈ R and AB ∈ U1 × U2 }

Note that φU1,U2 is a bijection.

Lemma 4. Let G′ = Φ(G, 〈U1, U2〉). For all x, α and β such that β = φU1,U2(α),

S
∗⇒G xα iff S

∗⇒G′ xβ.

Lemma 5. Let 〈U1, U2〉 be an neighbourhood pair of a USG G. Φ(G, 〈U1, U2〉)
is more general than G.

Probabilistic Generalization of SGs and Its Application 355

Algorithm 1. Transformation of USGs
Require: G is a USG.

while There exists an neighbourhood pair 〈U1, U2〉 in G. do
G := Φ(G, 〈U1, U2〉).

end while
return Go := G.

Proof. Let ψ : V ′ → V where V ′ = (V −U1)∪ (U1×U2) be defined as ψ(A) = A
for A ∈ V −U1 and ψ(AB) = A for AB ∈ U1 ×U2. By Lemma 4, ψ satisfies the
condition in Lemma 1. ��

Lemma 6. Algorithm 1 terminates for all G ∈ USGs.

Proof. Let 〈U1, U2〉 be an neighbourhood pair of G, H = 〈VH , Σ,RH , SH〉 denote
Φ(G, 〈U1, U2〉), and G′ = 〈VG′ , Σ,RG′ , SG′〉 denote G/σ. The following claims
are easy to prove but useful for what follows:

– 〈U1/σ, U2/σ〉 is an neighbourhood pair of G′, and Φ(G′, 〈U1/σ, U2/σ〉) is
equivalent to H/σ modulo renaming nonterminals.

G

/σ

��

Φ(·,〈U1,U2〉)
�� H

/σ modulo renaming
nonterminals��

G′ Φ(·,〈U1/σ,U2/σ〉) �� H ′

Let H ′ = 〈VH′ , Σ,RH′ , SH′ 〉 denote Φ(G′, 〈U1/σ, U2/σ〉).
– G has no neighbourhood pair if G′ has no neighbourhood pair.
– There is a trivial bijection π from VG′ to VH′ such that σG′(A) = σH′ (π(A)).

We define p(G′, A) ∈ V ∗
G′ for A ∈ VG′ as the longest sequence in {γ ∈ V ∗

G′ |
∀x [SG′

∗⇒ xAα implies Aα = γα′]}. From Lemma 3, if |p(G′, A)| = 1 for all
A ∈ VG′ , there is no neighbourhood pair in G′. Thus, it is enough to prove that∑

A∈VG′

|p(H ′, π(A))| <
∑

A∈VG′

|p(G′, A)|, (1)

from the second claim noted above. In the following, let us denote φU1/σ,U2/σ

as φ. From Lemma 4, we have p(H ′, π(A)) = φ(p(G′, A)). It is obvious that
φ(p(G′, A)) ≤ p(G′, A) for all A ∈ VG′ from the definition of p(G′, A).

When A ∈ U1/σ, since p(G′, A) is written as ABβ, where {B} = U2/σ,
φ(p(G′, A)) = ABφ(β). Thus |φ(p(G′, A))| = 1 + |φ(β)| ≤ 1 + |β| = −1 + |ABβ|.
Consequently, we obtain Eq. 1. ��

Since the above proof shows that the number of loop is less than |G/σ|2, it is
easy to prove that |Go| is O(|G||G/σ|2), while |Go/σ| is O(|G/σ|3), where Go

is the output USG of Alg.1. This implies that the time complexity of finding

356 T. Shibata, R. Yoshinaka, and T. Chikayama

neighbourhood pairs are O(|G/σ|6) in all. Thus the time complexity of Alg.1 is
also O(|G||G|2) when concerning only |G|. Let the ambiguity amb(G) of a USG
G be defined as |{H/σ modulo renaming of nonterminals | H ∈ USGs, L(H) =
L(G)}|. Since |Go| is limited to O(|G|amb(G)), the time complexity of Alg.1 is
limited to O(|G|max{amb(G),6}).

Lemma 7. Let two USGs Go and Ho have no neighbourhood pair. If L(Go) =
L(Ho), then Go and Ho are σ-isomorphic.

Proof. Let G = 〈V,Σ,R, S〉 and H = 〈V ′, Σ,R′, S′〉 denote Go/σ and Ho/σ,
respectively. It is sufficient to show that L(G) = L(H) implies that G and H are
equivalent modulo renaming nonterminals. Note that A = {A} for all A ∈ V ,
and thus σG(A) = σG(A′) implies A = A′.

First, we prove that σG(A) = σH(B) implies L(G,A) = L(H,B) for all A ∈ V
and B ∈ V . When σG(A) = σH(B),

∀x [S ∗⇒G xAα iff S
∗⇒H xBβ],

since L(G) = L(H). Thus y ∈ L(G,A) implies that, for some z ∈ L(H,B), z is a
prefix of y or y is a prefix of z (if not so, L(G) �= L(H)). We may assume that y is
a prefix of z. Suppose that y is a proper prefix of z, i.e., A ∗⇒G y and B

∗⇒H yCγ,
then we have

∃yCγ ∀x [S ∗⇒G xyα iff S
∗⇒H xyCγβ].

It follows that α = Dα for all x, where D ∈ V and σG(D) = σH(C). Thus
there exists some D such that, for all x, S

∗⇒G xAα implies α = Dα. For
A′ ∈ upG(A), we also have, for all x, S ∗⇒G xA′α implies α = Dα, because
S

∗⇒G xA′α
∗⇒ xzAα for some z. Thus, by Lemma 3, 〈upG(A), {D}〉 is an

neighbourhood pair of G. Clearly, Go has some neighbourhood pair iff G has
some neighbourhood pair. This is a contradiction. Thus y ∈ L(G,A) implies
y ∈ L(G,B) and vice versa, so L(G,A) = L(G,B).

Second, we show that G and H are equivalent modulo renaming nonterminals.
Let σG(A) = σH(B), A→ aα ∈ R and B → aβ ∈ R′.

If α = ε, β = ε since L(G,A) = L(H,B). If α = A1 · · ·Am and m ≥ 1, we
may assume that β = B1 · · ·Bn and n ≥ m. Let us prove that σG(Ai) = σH(Bi)
by induction on i. For the base, σG(A1) = σH(B1) since L(G,A) = L(H,B).
If σG(A1) = σH(B1), · · · and σG(Ai) = σH(Bi), then L(G,A1 · · ·Ai) = L(H,
B1 · · ·Bi). It follows that σG(Ai+1) = σH(Bi+1), since L(G,A) = L(H,B).
We have also n = m, since L(G,A1 · · ·Am) = L(H,B1 · · ·Bm) and L(G,A) =
L(H,B). ��

Let G1 = 〈V1, Σ,R1, S1〉 and G2 = 〈V2, Σ,R2, S2〉 be USGs for which L(G1) =
L(G2), neither having any neighbourhood pairs . Let

V ′ = { (A1, A2) ∈ V1 × V2 | sG1(A1) = sG2(A2)},
R′ = { (A1, A2)→ a(B1,1, B2,1) · · · (B1,m, B2,m) | (A1, A2) ∈ V ′,

A1 → aB1,1 · · ·B1,m ∈ R1 and An → aB2,1 · · ·B2,m ∈ R2 },
S∗ = (S1, S2).

Probabilistic Generalization of SGs and Its Application 357

The USG G∗, obtained by parallelizing G1 and G2, is defined as 〈V∗, Σ,R∗, S∗〉,
where V∗ and R∗ are arrived at by eliminating the useless nonterminals and rules
from V ′ and R′, respectively.

Lemma 8. G∗ is more general than G1 and G2.

Proof. Let πi : V∗ → Vi be a map such that πi(A1, A2) = Ai. From Lemma 7,
A1 → aα1 ∈ R1 iff A∗ → aα∗ ∈ R∗, π1(A∗) = A1 and π1(α∗) = α1. It follows
that S∗

∗⇒G∗ xα∗ implies Si
∗⇒Gi xπi(α∗) for all x. ��

Theorem 1. The class of USGs is unifiable.

Proof. Let USGs G0 and H0 be output by Algorithm 1 for the input USGs G and
H , with L(G) = L(H). G0 and H0 are more general than G and H , respectively,
by Lemma 5. Therefore G∗ obtained by parallelizing G0 and H0 is more general
than G and H . ��

For every RSL, there is a finite number of RSGs, modulo renaming nonterminals,
that exactly generate the RSL. Moreover, it is easy to prove the following lemma.

Lemma 9. For every RSG H, there is an RSG G in normal form, where G is
σ-isomorphic to H and more general than H.

It is easy to modify Yoshinaka’s learning algorithm so that, for a given RSG G,
it enumerates all RSGs in normal form that generate the same language as G.
In that learning algorithm. From the above theorem, we have the following:

Theorem 2. For every RSG G, we can construct a USG G∗ such that for any
RSG H with L(H) = L(G), it holds that K(H) ⊂ K(G∗). |G∗| is O(m(G)2amb(G)),
where m(G) = max{|H | | H is an RSG and L(G) = L(H)}.

5 Application to Reinforcement Learning

At first, let us introduce simple context-free decision processes, which are a
natural extension of finite-state Markov decision processes.

Definition 8. Let G = 〈V,Σ,R, S〉 be an SG. GU,P,C = 〈V,Σ,R, S, U, P, C〉
is a simple context-free decision process iff U,P,C are the following set and
functions.

– U is a finite set of actions.
– P is a map from R × U to [0, 1], called a probability assignment, where
∀u ∈ U, ∀A ∈ V [

∑
r∈RA

P (r, u) = 1] holds.
– C is a map from Σ to (−∞,∞), called reward.

Hereafter, if G is an SG or an RSG, simple context-free decision processes GU,P,C

are called an SG-DP or an RSG-DP, respectively.

358 T. Shibata, R. Yoshinaka, and T. Chikayama

Corresponding to a given SG-DP GU,P,C , the sequence of discrete random
variables is given as X1, Y1, X2, Y2, · · · , where the domains of Xi and Yi are
Σ∗V ∗ and U respectively, and X1 = S. The following properties hold.

Pr(Xt = xtαt|X1 = S, Y1 = u1, · · · , Xt−1 = xt−1αt−1, Yt−1 = ut−1)
= Pr(Xt = xtαt|Xt−1 = xt−1αt−1, Yt−1 = ut−1)

=

⎧⎪⎨⎪⎩
P (r, ut−1) if xt−1αt−1⇒Gxtαt with the rule r

1 if xt−1 = xt and αt−1 = αt = ε

0 otherwise

An SG-DP GU,P,C is called an episodic finite Markov decision process iff G =
〈V,Σ,R, S〉 is reduced and can be expressed in the form:

for some n ≥ 1, k ≥ 0 and V1, · · · , Vn+k ⊂ V ,
V = {A1(= S), · · · , An}, Σ = {a1, · · · , an+k},
R = {A→ ajAj |A ∈ Vj , j = 1, · · · , n} ∪ {A→ an+j |A ∈ Vn+j , j = 1, · · · , k}

The above definition is obviously equivalent to the usual definition of episodic
finite MDPs. Note that G is an RSG whenever GU,P,C is an episodic finite MDP.

Let GU,P,C = 〈V,Σ,R, S, U, P, C〉 be an SG-DP. A map μ : V → U is called
a policy. One of the main purpose of reinforcement learning is to determine the
policy μ so as to maximise the expectation of the total reward from S. The value
function J : V → (−∞,∞) under μ is defined as

Jμ(A) =
∑

x∈L(G,A)

Pr(x|〈G,Pμ〉, A)
|x|∑
i=1

C(ai),

where x = a1 · · ·a|x|, and Pμ is the probability assignment of G under μ, namely,
for B → bβ ∈ R, Pμ(B → bβ) = P (B → bβ, μ(A)).

Let M(GU,P,C , μ) be a (|V |, |V |) matrix whose element M(GU,P,C , μ)ij rep-
resents the expectation of the number of Aj derivable in one step from Ai

under μ, where V = {A1, A2, · · · , A|V |}. It is known that Pμ is consistent if
ρ(M(GU,P,C , μ)) < 1, where ρ(M) is the spectral radius of M [11].

When ρ(M(GU,P,C , μ)) < 1 for any μ ∈ π, where π is the set of all policies,
the optimal value function J∗ : V → (−∞,∞) can be defined as J∗(A) =
maxμ∈π Jμ(A). There exists some policy μ∗ such that Jμ∗(A) = J∗(A) for all A ∈
V , called an optimal policy. The optimal action-value function Q∗ : V × U → R
are also defined as Q∗(A, u) =

∑
A→aB1···Bk∈RA

P (A → aB1 · · ·Bk, u)(C(a) +∑k
i=1 J∗(Bi)). Note that the above definitions are a natural extension of the

usual definitions on reinforcement learning whose discounting factor equals 1.
Let GU,P,C = 〈V,Σ,R, S, U, P, C〉 be an SG-DP, and H = 〈V ′, Σ,R′, S′〉 be

an SG such that K(G) ⊂ K(H). Let ψ : V ′
≥2 → V be some map that satisfies

the property in Lemma 1. We can construct P ′, a probabilistic assignment of
H , such that, for A → aα ∈ R′ and u ∈ U , P ′(A → aα, u) = P (ψ(A) → aβ, u)
if A ∈ V ′

≥2, otherwise P ′(A→ aα, u) = 1. We have the following:

Probabilistic Generalization of SGs and Its Application 359

Theorem 3. Assume that ρ(M(GU,P,C , μ)) < 1 for all μ ∈ π(V, U), Qt defined
by the following iteration (Q-Learning) converges to the optimal action-value
function of HU,P ′,C as t→∞ w.p. 1.

Qt+1(At, ut) := (1− kt)Qt(At, ut) + kt(C(a) +
k∑

i=1

max
v∈U

Qt(Bi, v)), (2)

where the rule At → aB1 · · ·Bk ∈ R′ is randomly chosen with probability P (ψ(At)
→ aβ, ut) if At ∈ V ′

≥2, otherwise 1. kt ∈ [0, 1] is a random variable depending
on At and ut, called a step-size parameter. We assume that At, ut and kt satisfy
the following conditions for all (A, u) ∈ V ′ × U ;

∑
{t∈N|(At,ut)=(A,u)} k2

t < ∞,∑
{t∈N|(At,ut)=(A,u)} kt =∞.

Proof. By the definition of P ′, We may assume that G = H and ψ is the identity
map. If G = H , the convergence of the Q-Learning method in the above theorem
is proved by modifying the contraction mapping and the weighted norm in [4]. ��

Now, we explain the relationship between learning an SG from positive data and
Q-Learning on an SG-DP, and the necessity of probabilistic unification. We iden-
tify elements of Σ with observations and nonterminal symbols with unobservable
states. The division of a process into observable and unobservable states follows
the same scheme as appears in partially observable Markov decision processes
(POMDPs) [7]. The difference from POMDPs is that nonterminal symbols are
unobservable in SG-DPs but are determined if its grammar is known. In order
to use the extended Q-learning method (Eq. 2), we must identify the sequence
of nonterminals that corresponds to observations. We can regard histories of ob-
servations as positive data. Thus we can use the extended Q-learning method
(Eq. 2) after identifying the grammar from histories of observations.

We assume that the class of environments belongs to the class of RSG-DPs,
instead of to the class of SG-DPs, because the class of RSGs is of the most
suitable size among subclasses of SGs. The class of RSGs is large enough to
include all episodic finite MDPs, while also small enough to be learnable from
positive data efficiently. Moreover, the class of RSGs is a probabilistic unifiable
class within the class of USGs. Recall other subclasses of SGs we mentioned
in this paper; the class of VSGs are efficiently learnable but VSG-DPs do not
include all episodic finite MDPs, USGs are learnable from positive data but no
efficient learning algorithm for them is known, and SGs are not even learnable
from positive data.

Alg. 2 is a learning method for one episode in order to optimize the policy for
RSG-DPs when the grammars are unknown. Let GU,P,C = 〈V,Σ,R, S, U, P, C〉
be an RSG-DP (unknown). Let Env be a oracle function from {prefixes of L(G)}
×U to Σ∪{ε}. Env(x, u) = ε if x ∈ L(G), otherwise, Env(x, u) = a such that a is
randomly chosen with probability P (A → aα, u), where S

∗⇒ xA. As the initial
parameters, let the USG H , QH and Hist be as follows. H = 〈V ′, Σ,R′, S〉,
where V ′ = {[a]|a ∈ Σ} ∪ {S} and R′ = {[a] → b[b], S → b[b] | a, b ∈ Σ}.
QH(A, u) = 0 for all A ∈ V and u ∈ U , where QH : V × U → (−∞,∞).

360 T. Shibata, R. Yoshinaka, and T. Chikayama

Hist := ∅. Let Str(H,QH) : {prefixes of L(H)} → U be some strategy e.g.,
ε-greedy strategy [9].

By the definition of the learnability from positive data, it holds that, for some
n ∈ N, for all m > n, Hm = Hn and K(G) ⊂ K(Hn), where Hn is the inferred
grammar at the n-th episode. Thus, by Theorem 3, QHn converges to the optimal
action-value function.

Algorithm 2. A reinforcement learning for one episode on RSG-DP
Require: H = 〈V, Σ, R, S〉 is an USG and QH : V × U → (−∞, ∞).

x := ε and u := Str(H,QH)(x).
while (a := Env(x, u)) �= ε do

if S
∗⇒H xAα⇒xaβα then

Update QH(A, u) according to Eq. 2, u := Str(H,QH)(xa), and x := xa.
else

x := xa. u is randomly chosen under the uniform distribution on U .
end if

end while
Hist := Hist ∪ {x}.
if x �∈ L(H) then

G = all the RSGs in normal form generated by the algorithm for learning RSGs
from Hist.
H :=[the USG obtained by unifying all the RSGs in G], with QH initialized to 0.

end if

Finally, as an example of an RSG-DP and an application of the unification
algorithm, we consider the problem of maximizing total reward under some con-
ditions. An agent starts from the position s = (1, 2) on the map (Fig. 1), and
can move left, right, up or down, unless there is a wall in that direction. It costs
1 (−1 as a reward) per single step, and the agent is allowed to occupy a location
either f+ = (5, 6) or f− = (5, 2) at most one time. When reaching to the goal
g = (9, 2), if the agent has passed through f+, it observes h+ w.p. 0.9 or h− w.p.
0.1, whereas if the agent has passed through f−, it observes h+ w.p. 0.1 or h−
w.p. 0.9. The observation of h+ implies that the agent gets 100 as a reward, and
of h− implies that it gets 50. In this case, the RSG G = 〈V,Σ,R, S〉 is written
as follows. Σ = Map∪ {h+, h−}, V = {[a, 0] | a ∈ Map and a �= g}∪ {[f±, 1], S},
and

R ={[a, 0]→ b[b, 0] | b ∈ mov(a) and b �∈ {f+, f−, g}}
∪{[a, 0]→ b[b, 0][b, 1] | b ∈ mov(a) and b ∈ {f+, f−}}
∪{[a, 0]→ g | g ∈ mov(a)} ∪ {[f+, 1]→ h±, [f−, 1]→ h±, S → s[s, 0]},

where Map = {(i, j)|(i, j) is a reachable position on the map.}, and mov(i, j)
denotes a set of positions where the agent can move from (i, j) in one step. For
example, mov(S) = {(1, 1), (2, 3), (2, 2)}, mov(f+) = {(6, 6)} and mov(g) = ∅.

There is another RSG H = 〈V ′Σ,R′, S〉 such that L(G) = L(H), where
V ′ = {[a, 0] | a ∈ Map} ∪ {S} and R′ = {[a, 0] → b[b, 0] | b ∈ mov(a)} ∪

Probabilistic Generalization of SGs and Its Application 361

{S → s[s, 0], [g, 0] → h±}. Note that the RSG-DP based on H is an episodic
finite MDP.

G and H are all the RSGs in normal form whose language is equivalent
to L(G), thus both G and H , and only G and H are output by the learning
algorithm of RSGs from positive data. The USG G∗ = 〈V∗, Σ,R∗, S∗〉 trans-
formed from G by Alg. 1 is as follows. V∗ = {[a, 0] | a ∈ West} ∪ {[a, 0]± | a ∈
East} ∪ {[f±, 0]±, S∗}, and

R∗ ={[a, 0]→ b[b, 0] | b ∈ mov(a) and b ∈West}
∪{[a, 0]± → b[b, 0]± | b ∈ mov(a) and b ∈ East}
∪{[a, 0]± → g[f±, 1] | g ∈ mov(a)}
∪{[(4, 4± 2), 0]→ f±[f±, 0]±, [f+, 1]→ h±, [f−, 1]→ h±, S → s[s, 0]},

where East = {(i, j) ∈ Map | j ≥ 6, (i.j) �= g}, West = {(i, j) ∈ Map | j ≤ 4},
and [a, 0]± denote [a, 0][f±,1]. Table 1 shows the neighbourhood pair and changed
rules for each loop in Alg. 1 for G.

Table 1. Neighbourhood pairs in Alg. 1 for G

Loop U1 U2 New rules obtained by Φ(·, 〈U1, U2〉)
1 {[f+, 0]} {[f±, 1]} {[(4, 6), 0] → f+[f+, 0]+, [f+, 0]+ → (6, 6)[(6, 6), 0][f+ , 1]}
2 {[f−, 0]} {[f±, 1]} {[(4, 2), 0] → f−[f−, 0]−, [f−, 0]− → (6, 2)[(6, 2), 0][f−, 1]}

3
{[a, 0] |
a ∈ East} {[f±, 1]}

{[f±, 0]± → [(6, 4 ± 2), 0]}∪
{[a, 0]± → b[b, 0]± | b ∈ mov(a) and b ∈ East}∪

{[a, 0]± → g[f±, 1] | g ∈ mov(a)}

G∗ is σ-isomorphic to H and clearly K(H) ⊂ K(G∗). Thus K(G∗) is more general
than both G and H . Note that G∗ is not an RSG but a USG.

The optimal length of episode of this problem is 16 when the agent is through
f+, and thus the maximum total reward is 79. Fig. 2 is an experiment of Alg. 2
on the above problem. It demonstrates that the agent approaches the optimal
path and obtains maximum total reward after the grammatical inference and
the unification are complete at approximately the 200th episode. In Fig. 3 our

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9

s f−

f+

g

Fig. 1. Example prob-
lem of RSG-DP

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000
-100

-50

 0

 50

 100

 150

ep
is

od
e

le
ng

th

to
ta

l r
ew

ar
d

num. of episodes

episode length
total reward

Fig. 2. Total reward and
episode length

-100

-50

 0

 50

 100

 150

 0 200 400 600 800 1000

to
ta

l r
ew

ar
d

num. of episodes

extended QL
naive QL

Fig. 3. Comparison of
QL and SG-QL methods

362 T. Shibata, R. Yoshinaka, and T. Chikayama

method is comparing to the naive Q-Learning method, in which the environment
is assumed to be an episodic finite MDP (same as H). The total reward obtained
by the naive Q-Learning method is approximately 40, indicating that the agent
passed through f−.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45 (1980) 117–135

2. Angluin, D.: Inference of reversible languages. Journal of the Association for Com-
puting Machinery 29 (1982) 741–765

3. Barto, A. G. and Mahadevan, S.: Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems: Theory and Applications 13 (2003)
41–77

4. Bertsekas, D. P. and Tsitsiklis, J. N.: Neuro-dynamic Programming. Athena Sci-
entific (1996) Sec. 5.6

5. Hirshfeld, Y and Jerrum, M. and Moller, F.: A polynomial algorithm for deciding
bisimilarity of normed context-free processes. Theoretical Computer Science 158
(1996) 143–159

6. Kobayashi, S. : Iterated transductions and efficient learning from positive data: A
unifying view. In Proceedings of the 5th International Colloquium on Grammatical
Inference, 1891 in Lecture Notes in Computer Science (2000) 157–170

7. Kaelbling, L. P. , Littman, M. L. and Cassandra, A. R.: Planning and acting in
partially observable stochastic domains. Artificial Intelligence 101 (1998) 99–134

8. Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer
Science 185 (1997) 15–45

9. Sutton, R. S. and Barto, A. G.: Reinforcement Learning: An Introduction. MIT
Press (1998)

10. Wakatsuki, M. Teraguchi, K. and Tomita, E.: Polynomial time identification of
strict deterministic restricted one-counter automata in some class from positive
data. Proceedings of the 7th International Colloquium on Grammatical Inference
3264 in Lecture Notes in Computer Science (2004) 260–272

11. Wetherell, C.S.: Probabilistic languages: A review and some open questions. Com-
puting Surveys, 12 No. 4 (1980) 361–379

12. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 298 (2003) 179–206

13. Yoshinaka, R.: Polynomial-Time Identification of an Extension of Very Simple
Grammars from Positive Data. Proceedings of the 8th International Colloquium
on Grammatical Inference 4201 in Lecture Notes in Computer Science (2006)

Unsupervised Slow Subspace-Learning from
Stationary Processes

Andreas Maurer

Adalbertstr. 55
D-80799 München

andreasmaurer@compuserve.com

Abstract. We propose a method of unsupervised learning from sta-
tionary, vector-valued processes. A low-dimensional subspace is selected
on the basis of a criterion which rewards data-variance (like PSA) and
penalizes the variance of the velocity vector, thus exploiting the short-
time dependencies of the process. We prove error bounds in terms of the
β-mixing coefficients and consistency for absolutely regular processes.
Experiments with image recognition demonstrate the algorithms ability
to learn geometrically invariant feature maps.

1 Introduction

Some work has been done to extend the results of learning theory from in-
dependent, identically distributed input variables to more general stationary
processes ([19], [8], [16]). For suitably mixing processes this extension is pos-
sible, with an increase in sample complexity caused by dependencies which
slow down the estimation process. But some of these dependencies also pro-
vide important information on the environment generating the process and can
be turned from a curse to a blessing, in particular in the case of unsupervised
learning, when side information is scarce and the sample complexity is not as
painfully felt.

Consider a stationary stochastic process modeling the evolution of complex
sensory signals by a sequence of zero-mean random variables Xt taking values in
a Hilbert-space H . Let Pd be the class of d-dimensional orthogonal projections
in H . From observation of X0, ..., Xm we seek to find some P ∈ Pd such that
the projected stimulus PX on average captures the significance implied by the
primary stimulus X ∈ H . To guide this search we will invoke two principles of
common sense.

The first principle states that significant signals should have a large variance.
In view of the zero-mean assumption this classical idea suggests to maximize
E
[
‖PX0‖2

]
, which coincides with the objective of PSA1([9], [10], [15]) seeking

to give the perspective with the broadest view of the distribution.

1 Principal Subspace Analysis, sometimes Principal Component Analysis (PCA) is
used synonymously.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 363–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 A. Maurer

The second principle, the principle of slowness (introduced by Földiak [2],
promoted and developed by Wiskott [17]), states that sensory signals vary more
quickly than their significance. Consider the visual impressions caused by a fa-
miliar complex object, like a tree on the side of the road or a person acting in
a movie. Any motion or deformation of the object will cause rapid changes in
the states of retinal photoreceptors (or pixel-values). Yet the identities of the
tree and the person in the movie remain unchanged. When a person speaks, the
communicated ideas vary much more slowly than individual phonemes, let alone
the air pressure amplitudes of the transmitted sound signal.

The slowness principle suggests to minimize E

[∥∥∥PẊ0

∥∥∥2
]

(here Ẋ is the ve-

locity process Ẋt = Xt − Xt−1), and combining both principles leads to the
objective function

Lα (P) = E

[
α ‖PX0‖2 − (1− α)

∥∥∥PẊ0

∥∥∥2
]
,

to be maximized, where the parameter α ∈ [0, 1] controls the trade-off between
two potentially conflicting goals. In section 4 we will further justify the use of
this objective function and show that for α ∈ (0, 1) maximizing Lα minimizes an
error bound for a simple classification algorithm on a generic class of classification
problems, and that

√
α can be interpreted as a scale-parameter. When there is

no ambiguity we write L = Lα.
As the details of the process X are generally unknown, the optimization has

to rely on an empirical basis. Let (X)m0 = (X0, ..., Xm) be m + 1 consecutive
observations of the process X and define an empirical analogue L̂ (P) of the
objective function L

L̂ (P) =
1
m

m∑
i=1

(
α ‖PXi‖2 − (1− α)

∥∥∥PẊi

∥∥∥2
)
.

We now propose to seek P ∈ Pd to maximize L̂ (.). This optimization problem,
its analysis, algorithmic implementation and preliminary experimental tests are
the contributions of this paper.

Existence of Solutions. We will require the general boundedness assumption
that ‖Xt‖ ≤ 1/2 a.s. Define an operator T on H by

Tz = E
[
α 〈z,X〉X − (1− α)

〈
z, Ẋ

〉
Ẋ
]

for z ∈ H. (1)

Then T = αCX − (1− α)CẊ , where CX and CẊ are the covariance operators
corresponding to X and Ẋ respectively. The empirical counterpart to T is T̂
defined by

T̂ z =
1
m

m∑
i=1

(
α 〈z,Xi〉Xi − (1− α)

〈
z, Ẋi

〉
Ẋi

)
. (2)

Unsupervised Slow Subspace-Learning from Stationary Processes 365

The operators T and T̂ are central objects of the proposed method. They are
both symmetric and compact, T is trace-class and T̂ has finite rank. If α ∈ (0, 1)
they will tend to have both positive and negative eigenvalues. The following
Theorem (see section 2) shows that a solution of our optimization problem can
be obtained by projecting onto a dominant eigenspace of T̂ .

Theorem 1. Fix α ∈ [0, 1] and let λ̂1 ≥ λ̂2 ≥ ... ≥ 0 be the nonnegative
eigenvalues of T̂ , and (ei) the sequence of associated eigenvectors. Then

max
P∈Pd

L̂ (P) =
d∑

i=1

λ̂i,

the maximum being attained when P is the orthogonal projection onto the span
of e1, ..., ed.

This leads to a straightforward batch algorithm: Observe and store a realization
of (X0, ..., Xm), construct T̂ , find eigenvectors and eigenvalues and project onto
the span of d orthonormal eigenvectors corresponding to the largest eigenvalues.

Such a solution P need not be unique. In fact, if α = 0 and dim (H) =∞, then
T̂ is a nonpositive operator with infinite dimensional nullspace, and there is an
infinity of mutually orthogonal solutions, from which an arbitrary choice must be
made. This can hardly be the way to extract meaningful signals, and the utility
of the objective function with α = 0 is questionable for high-dimensional input
spaces. Except for very pathological cases, this extreme degeneracy is absent in
the case α > 0. In the generic, noisy case all nonzero eigenvalues will be distinct
and if m is large then there are more than d positive eigenvalues of T̂ , so that
the solution will be unique.

Estimation. Having found P to maximize L̂ (.), can we be confident that L (P)
is also nearly maximal, and how does this confidence improve with the sample
size?

These questions are complicated by the interdependence of observations, in
particular by the possibility of being trapped for longer periods of time. Since
we want to estimate an expectation on the basis of a temporal average, some
sort of ergodicity property of the process X will be relevant. Our bounds are
expressed in terms of the mixing coefficients β (a), which roughly bound the
interdependence of past and future variables separated by a time interval of
duration a. Combining the techniques developed in [11] and [19] we arrive at the
following result:

Theorem 2. With the assumptions already introduced above, fix δ > 0 and let
m, a ∈ N, a < m/2 and l = �m/2a� and β (a) < δ/ (2l). Then with probability
greater 1− δ in the sample (X)m

0 = (X0, ..., Xm) we have

sup
P∈Pd

∣∣∣L̂ (P)− L (P)
∣∣∣ ≤ 4√

l

(
√
d +

√
1
2

ln
1

δ/2− lβ (a− 1)

)
.

366 A. Maurer

If the mixing coefficients β are known, then the right hand side can be minimized
with an appropriate choice of a, which in general depends on the sample size (or
total learning time) m. For easy interpretation assume β (a) = 0 for a ≥ a0. Then
we can interpret a0 as the mixing time beyond which all correlations vanish. If
we set a = a0 +1 above, the resulting bound resembles the bound for the iid case
with an effective sample size l = �m/ (2 (a0 + 1))�. This shows the ambiguous
role of temporal dependencies: Over short time intervals they are beneficial,
providing us with information which allows us to go beyond PSA by using the
slowness principle. Over long periods of time they get in the way of mixing and
become detrimental to learning.

Often the mixing coefficients are unknown, but one knows (or assumes or
hopes) that X is absolutely regular, that is β (a) → 0 as a → ∞. We can then
still establish learnability in the sense of convergence in probability:

Theorem 3. If X is absolutely regular then for every ε > 0 we have

lim
m→∞

Pr
{

sup
P∈Pd

∣∣∣L̂ (P)− L (P)
∣∣∣ > ε

}
= 0.

We will prove both theorems in section 3.
A major problem caused by large observation times is the accumulating mem-

ory requirement to store the sample data, as long as we adhere to the batch
algorithm sketched above. For this reason we use an online-algorithm for our
experiments in image processing. The algorithm, a modification of an algorithm
introduced by Oja [9], is briefly introduced in section 5. We apply it either
directly to the image data or to train the second layer of a two-layered radial-
basis-function network.

The experiments reported in section 6 involve processes with specific geomet-
ric invariants: Consider rapidly rotating views of a slowly changing scene. The
projection returned by our algorithm then performs well as a preprocessor for
rotation invariant recognition. An analogous behaviour was observed for scale-
invariance, and it might be conjectured that similar mechanisms could account
for the ubiquity of scale invariant perception in biological vision.

A similar technique has been proposed by Wiskott [17]. It is missing an ana-
logue of a positive variance term in the objective function. The problem of poten-
tially trivial solutions is circumnavigated by an orthonormalization prescription
(whitening) of the covariance matrix prior to the subspace search, which then
essentially seeks out a minimal subspace of the velocity covariance. In high (or
infinite) dimensions minimal subspace analysis of (compact positive) operators
should cause the above-mentioned degeneracy problem, because the eigenvalues
will concentrate at zero. In [17] a corresponding problem is in fact mentioned.
Also the orthonormalization increases the norms of the input vectors as the di-
mension grows, making it difficult to analyse the generalisation behaviour. In
our approach all these problems are eliminated by a positive variance term,
corresponding to α > 0.

Unsupervised Slow Subspace-Learning from Stationary Processes 367

2 Preliminaries

For the next sections H will be a real separable infinite-dimensional Hilbert
space with norm ‖.‖ and inner product 〈., .〉. In practice H will be finite di-
mensional, but as the dimension is large and should not enter into our results
we may as well assume infinite-dimensionality, which will also eliminate some
complications.

2.1 Hilbert Schmidt Operators

With H2 we denote the real vector space of symmetric operators on H satisfying∑∞
i=1 ‖Tei‖2 < ∞ for every orthonormal basis (ei)

∞
i=1 of H . For S, T ∈ H2 the

number 〈S, T 〉2 = Tr (TS) defines an inner product on H2, making it into a
Hilbert space with norm ‖T ‖2 = 〈T, T 〉1/2

2 . The members of H2 are compact and
called Hilbert-Schmidt operators (see Reed and Simon [12] for background on
functional analysis). For every v ∈ H we define an operator Qv by

Qvx = 〈x, v〉 v for all x ∈ H.

The set of d-dimensional, orthogonal projections in H is denoted with Pd. The
following facts are easily verified (see [5]):

Lemma 1. Let x, y ∈ H and P ∈ Pd. Then (i) Qx ∈ H2 and ‖Qx‖2 = ‖x‖2,
(ii) 〈Qx, Qy〉2 = 〈x, y〉2, (iii) 〈P,Qx〉2 = ‖Px‖2 and (iv) ‖P‖2 =

√
d.

In terms of the Q-operators we can rewrite the operators T and T̂ in (1) and
(2) as

T = E [αQX − (1− α)QẊ] and T̂ =
1
m

m∑
i=1

(
αQXi − (1− α)QẊi

)
.

Using (iii) above, the objective functionals L (.) and L̂ (.) become

L (P) = 〈T, P 〉2 and L̂ (P) =
〈
T̂ , P

〉
2
.

Let λ̂1 ≥ λ̂2 ≥ ... ≥ 0 be any nonincreasing enumeration of the nonnegative
eigenvalues of T̂ , counting multiplicities, and (ei) a corresponding orthonormal
sequence of eigenvectors. Note that the sequence is necessarily infinite because
T̂ has finite rank and thus an infinite-dimensional null-space. Now let P ∈ Pd.
Since P has the eigenvalue 1 with multiplicity d and all its other eigenvalues are
zero, it follows from Horn’s theorem [14, Theorem 1.15] that

〈
T̂ , P

〉
2
≤

d∑
i=1

λ̂i.

368 A. Maurer

If P is the projection onto the span of e1, ..., ed then this becomes an equality.
This shows that any such maximal projection P is also a maximizer for L̂ (P)
and that

max
P∈Pd

L̂ (P) =
d∑

i=1

λ̂i,

thus proving Theorem 1.
These arguments are fairly standard, but in the infinite dimensional case there

are some pitfalls resulting from non-positivity. For example the above is not
generally true for the operator T corresponding to the true objective functional
L, because it may happen that T has fewer than d nonnegative eigenvalues, or
none at all. Since all negative eigenvalues converge to 0, the supremum might
not be attained.

2.2 Mixing Coefficients and Inequalities

Let ξ = {ξt}t∈Z
be a stationary stochastic process with values in a measurable

space (Ω,Σ) and with law μ. For A ⊆ Z let σA denote the σ-algebra generated
by the variables ξt with t ∈ A, and use μA to denote the marginal distribution
of μ on

(
ΩA, σA

)
.

Definition 1. For k ∈ N define the mixing coefficient

βξ (k) = E
[
sup

{∣∣μ (B|σ{t:t≤l}
)
− μ (B)

∣∣ : B ∈ σ{t:t≥l+k}
}]

.

The process ξ is called absolutely regular or β-mixing if βξ (k)→ 0 as k →∞.

The interpretation is as follows: The random variable

sup
{∣∣μ (B|σ{t:t≤l}

)
− μ (B)

∣∣ : B ∈ σ{t:t≥l+k}
}

gives the largest change in the probability of any future event B occurring when
a specific realization of the past is unveiled. It therefore measures the maxi-
mal dependence of the future {t ≥ l + k} on the past {t ≤ l}, as a function of
the past. Taking the expectation of this variable leads to a quantity which is
itself independent of the past but takes the probabilities of different realiza-
tions of the past into account (see the book by Rio [13] for a general theory of
weakly dependent processes). From this definition one can prove the following
(Yu [19]):

Lemma 2. Let ξ = {ξt}t∈Z
be stationary with values in a measurable space

(Ω,Σ) and B ∈ σ{1,...,m}. Then∣∣μ{1,...,m} (B)−
(
μ{1}

)m (B)
∣∣ ≤ (m− 1)βξ (1) .

We will also need the following lemma of Vidyasagar [16, Lemma 3.1]:

Lemma 3. Suppose β (k) ↓ 0 as k → ∞. It is possible to choose a sequence
{am} such that am ≤ m, and with lm = �m/am� we have that lm → ∞ while
lmβ (am)→ 0 as m→∞.

Unsupervised Slow Subspace-Learning from Stationary Processes 369

3 Generalization

We first prove a general result for vector-valued processes. For two subsets
V,W ⊆ H of a Hilbert space H we introduce the following notation

‖V ‖ = sup
v∈V

‖v‖ and |〈V,W 〉| = sup
v∈V,w∈W

|〈v, w〉| .

Theorem 4. Let V,W ⊂ H and X = {Xt}t∈Z
a stationary, mean zero process

with values in V .
1. Fix δ > 0 and let m, a ∈ N, a < m/2 and l = �m/2a� and β (a) < δ/ (2l).

Then with probability greater than 1− δ we have

sup
w∈W

∣∣∣∣∣ 1
m

m∑
i=1

〈w,Xi〉
∣∣∣∣∣ ≤ 2√

l

(
‖V ‖ ‖W‖+ |〈V,W 〉|

√
1
2

ln
1

δ/2− lβX (a)

)
.

2. If X is absolutely regular then for every ε > 0

Pr

{
sup

w∈W

∣∣∣∣∣ 1
m

m∑
i=1

〈w,Xi〉
∣∣∣∣∣ > ε

}
→ 0 as m→∞.

If we let W be the unit ball in H we immediately obtain the following

Corollary 1. Under the first assumptions of Theorem 4 we have with probability
greater 1− δ that∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≤ 2 ‖V ‖√
l

(
1 +

√
1
2

ln
1

δ/2− lβX (a)

)
.

If in addition Xt is absolutely regular then ‖(1/m)
∑m

i=1 Xi‖ → 0 in probability.

Here is a practical reformulation with trivial proof:

Corollary 2. Theorem 4 and Corollary 1 remain valid if the mean-zero assump-
tion is omitted, Xi is replaced by Xi−E [X1] and ‖V ‖ and |〈V,W 〉| are replaced
by 2 ‖V ‖ and 2 |〈V,W 〉| respectively.

To prove Theorem 4 we first establish an analogous result for iid Xi (essentially
following [11]) and then adapt it to dependent variables.

Lemma 4. Let V,W ⊂ H be and X1, ..., Xm iid zero-mean random variables
with values in V . Then for ε and m such that ‖W‖ ‖V ‖ <

√
mε we have

Pr

{
sup

w∈W

∣∣∣∣∣ 1
m

m∑
i=1

〈w,Xi〉
∣∣∣∣∣ > ε

}
≤ exp

(
− (
√
mε− ‖V ‖ ‖W‖)2

2 |〈V,W 〉|2

)
.

370 A. Maurer

Proof. Consider the average X̄ = (1/m)
∑m

1 Xi. With Jensen’s inequality and
using independence we obtain

(
E
[∥∥X̄∥∥])2 ≤ E

[∥∥X̄∥∥2
]

=
1
m2

m∑
i=1

E
[
‖Xi‖2

]
≤ ‖V ‖2 /m.

Now let f : V m → R be defined by f (x) = supw∈W |(1/m)
∑m

1 〈w, xi〉|. We
have to bound the probability that f > ε. By Schwartz’ inequality and the
above bound we have

E [f (X)] = E

[
sup

w∈W

∣∣〈w, X̄〉∣∣] ≤ ‖W‖E
[∥∥X̄∥∥] ≤ (1/√m) ‖W‖ ‖V ‖ . (3)

Let x ∈ V m be arbitrary and x′ ∈ V m be obtained by modifying a coordinate
xk of x to be an arbitrary x′k ∈ V . Then

|f (x)− f (x′)| ≤ 1
m

sup
w∈W

|〈w, xk〉 − 〈w, x′k〉| ≤
2
m
|〈V,W 〉| .

By (3) and the bounded-difference inequality (see [7]) we obtain for t > 0

Pr
{
f (X) >

‖W‖ ‖V ‖√
m

+ t

}
≤ Pr {f (X)− E [f (X)] > t} ≤ exp

(
−mt2

2 |〈V,W 〉|2

)
.

The conclusion follows from setting t = ε− (1/
√
m) ‖W‖ ‖V ‖ �

The proof of Theorem 4 now uses the techniques introduced by Yu [19] (see also
Meir [8] and Lozano et al [3]).

Proof (of Theorem 4). Select a time-scale a ∈ N, 2a < m and represent the
discrete time axis as an alternating sequence of blocks

Z = (..., H−1, T−1, H0, T0, H1, T1, ..., Hk, Tk, ...) ,

where each of the Hk and Tk has length a,

Hk = {2ka, ..., 2ka+ a− 1} and Tk = {(2k + 1) a, ..., (2k + 1) a + a− 1} .

We now define the blocked processes XH and XT with values in co(V) by XH
t =

(1/a)
∑

j∈Ht
Xj and XT

t = (1/a)
∑

j∈Tt
Xj . By stationarity the XH

i and XT
i are

identically distributed and themselves stationary. Because of the gaps of size a
we have βXH (1) = βXT (1) = βX (a). We can now write

(1, ...,m) = (H1, T1, H2, T2, ..., Hl, Tl, R) ,

Unsupervised Slow Subspace-Learning from Stationary Processes 371

where the number l of block-pairs is chosen so as to minimize the size of the
remainder R, so l = �m/ (2a)� and |R| < 2a. For arbitrary ε > 0 we obtain

Pr

{
sup

w∈W

∣∣∣∣∣ 1
2al

2al∑
i=1

〈w,Xi〉
∣∣∣∣∣ > ε

}

= Pr

{
sup

w∈W

∣∣∣∣∣ 12l
l∑

i=1

〈
w,XH

i

〉
+

1
2l

l∑
i=1

〈
w,XT

i

〉∣∣∣∣∣ > ε

}

≤ Pr

{
sup

w∈W

∣∣∣∣∣ 12l
l∑

i=1

〈
w,XH

i

〉∣∣∣∣∣+ sup
w∈W

∣∣∣∣∣ 12l
l∑

i=1

〈
w,XT

i

〉∣∣∣∣∣ > ε

}

= 2 Pr

{
sup

w∈W

∣∣∣∣∣1l
l∑

i=1

〈
w,XH

i

〉∣∣∣∣∣ > ε

}

≤ 2 exp

⎛⎜⎝−
(√

lε− ‖V ‖ ‖W‖
)2

2 |〈V,W 〉|2

⎞⎟⎠+ 2lβX (a) .

The last inequality follows from the mixing Lemma 2, βXH (1) = βX (a), the iid
case Lemma 4 and the fact that ‖co (V)‖ = ‖V ‖ and |〈co (V) ,W 〉| = |〈V,W 〉|.
To deal with the remainder R, note that

Pr

{
sup

w∈W

∣∣∣∣∣ 1
m

m∑
i=1

〈w,Xi〉
∣∣∣∣∣ > ε

}
≤ Pr

{
sup

w∈W

∣∣∣∣∣ 1
2al

2al∑
i=1

〈w,Xi〉
∣∣∣∣∣+ ‖V ‖ ‖W‖

l
> ε

}
.

We thus obtain

Pr

{
sup

w∈W

∣∣∣∣∣ 1
m

m∑
i=1

〈w,Xi〉
∣∣∣∣∣ > ε

}

≤ 2 exp

⎛⎜⎝−
(√

lε−
(
1 + 1√

l

)
‖V ‖ ‖W‖

)2

2 |〈V,W 〉|2

⎞⎟⎠+ 2lβX (a) . (4)

Solving for ε and using
(
1 + 1/

√
l
)
≤ 2 gives the first conclusion.

If X is absolutely regular then β (a) ↓ 0 as a → ∞. Choosing a subsequence
am as in Lemma 3 we have lm = �m/ (2a)� → ∞ and lmβ (am)→ 0. Substituting
lm for l and am for a above, the bound (4) will go to zero as m → ∞, which
proves the second conclusion. �
Now it is easy to prove the bounds in the introduction by applying Theorem 4
to the stationary operator-valued stochastic process

At = αQXt − (1− α)QẊt
, (5)

which we reinterpret as a vector-valued process with values in the Hilbert space
H2 of Hilbert-Schmidt operators. Note that T = E [A1] and T̂ = (1/m)

∑m
1 Ai.

372 A. Maurer

Proof (of Theorem 2 and Theorem 3). : First note that βA (a) = βX (a− 1),
because At depends also on Xt−1, and that A is absolutely regular if X is. Set
W = Pd and define V ⊂ H2 by

V = {αQx − (1− α)Qx : ‖x‖ ≤ 1 and ‖y‖ ≤ 1} .

Then At ∈ V a.s. By Lemma 1 (i), V is contained in the unit ball in H2 and

|〈V,W 〉2| = sup
P∈Pd

sup {|〈P, αQx − (1− α)Qx〉2| : ‖x‖ ≤ 1, ‖y‖ ≤ 1}

≤ sup
P∈Pd

sup
{
α ‖Px‖2 + (1− α) ‖Py‖2

}
≤ 1.

By Lemma 1 (iv) ‖W‖2 =
√
d. We also have

sup
P∈Pd

∣∣∣L̂ (P)− L (P)
∣∣∣ = sup

P∈Pd

∣∣∣∣∣ 1
m

m∑
i=1

〈P,Ai − E [A1]〉2

∣∣∣∣∣ .
Applying Corollary 2 to the process At−E [A1] gives both Theorem 2 and 3. �

4 A Generic Error Bound

Now we show that maximizing L minimizes an error-bound for all classifica-
tion tasks posessing a certain continuity property. We fix a stationary process
ξ = {ξt}t∈Z

with values in a measurable space (Ω,Σ), law μ and marginal dis-
tributions μI for I ⊂ Z.

Definition 2. Let ξ be as above. An (at most) countable partition Ω =
⋃

k Ek

of Ω into disjoint measurable Ek is continuous w.r.t. X if for all k and all
A,B ⊆ Ek we have

μ{0} (A)μ{0} (B) ≤ μ{0,1} (A,B) .

So knowledge that Ek occurs at time 0 increases the probability at time 1 for
any event A implying Ek. For an example let Ω be the unit interval, {Ek} any
partition of Ω into intervals of diameter less than 1/2 and Xt a Gaussian random
walk with periodic boundary conditions. Unlike the mixing properties relevant
for generalization, the notion of continuity is concerned only with process de-
pendencies on a microscopic time-scale.

We now assume that the process X has the form Xt = φ ◦ ξt, where φ : Ω →
H is a a feature map with ‖φ‖ ≤ 1/2 and E [φ ◦ ξt] = 0. One easily verifies
βX (k) ≤ βξ (k), for all k. The feature map φ may hide important information
such as labels, for example if Ω = X × Y and φ (x, y) = ψ (x).

Suppose now that {Ek} is a partition of Ω, with each Ek defining some pattern
class. Given a pair (ω1, ω2) drawn from μ2

{0} we have to decide if ω1 and ω2
belong to the same class, that is to decide if there is some k such that x ∈ Ek

Unsupervised Slow Subspace-Learning from Stationary Processes 373

and y ∈ Ek. In the absence of other known structure we use a simple metric
decision rule based on the projected input and the distance threshold

√
α.

ω1 and ω2 are in the same class iff ‖Pφ (ω1)− Pφ (ω2)‖2 < α.

Error bounds for this rule can be converted into error bounds for simple metric
classifiers, whenever we are provided with examples for the various Ek.

Theorem 5. With ξ, φ and X as above and α ∈ (0, 1), if {Ek} is continuous
w.r.t. ξ, then the error probability for the above rule, as ω1 and ω2 are drawn
independently from μ{0}, is bounded by

Err ≤ 1
1− α

(
1− 2

α
Lα (P)

)
−R

where R =
∑

k

(
μ{0} (Ek)

)2.
The theorem implies a rule to select the trade-off parameter α: It should be

chosen to minimize the first term in the bound above, so α should be close to 0,
but a positive value for Lα (P) should still be obtained, corresponding to positive
eigenvalues of the operator T .

Proof. We use the notation Δ = Δ (ω1, ω2) := ‖Pφ (ω1)− Pφ (ω2)‖2. Then

Err =
∑

k,l:k �=l

Eμ2
{0}

[1Δ<α1Ek×El
] +
∑

k

Eμ2
{0}

[1Δ≥α1Ek×Ek
]

= Eμ2
{0}

[1Δ<α] + 2
∑

k

Eμ2
{0}

[1Δ≥α1Ek×Ek
]−R

≤ Eμ2
{0}

[
1−Δ

1− α

]
+ 2

∑
k

Eμ2
{0}

[
Δ

α
1Ek×Ek

]
−R

≤ 1
1− α

− 1
1− α

Eμ2
{0}

[Δ] +
2
α

∑
k

Eμ{0,1} [Δ 1Ek×Ek
]−R.

The first inequality uses the bounds 1Δ<α ≤ (1−Δ) / (1− α) and 1Δ≥α ≤ Δ/α,
which hold since Δ ∈ [0, 1]. The other inequality uses the continuity property
of the Ek-system, because for any nonnegative function g = g (ω1, ω2) and any
k we have

Eμ2
{0}

[g 1Ek×Ek
] ≤ Eμ{0,1} [g 1Ek×Ek

] ,

as can be shown directly from Definition 2 by an approximation with simple
functions. Now we use∑

k

Eμ{0,1} [Δ 1Ek×Ek
] ≤ Eμ{0,1} [Δ] = E

[∥∥∥PẊ1

∥∥∥2
]

= E

[∥∥∥PẊ0

∥∥∥2
]

and the identity Eμ2
{0}

[Δ] = 2E
[
‖PX0‖2

]
, which follows from the mean-zero

assumption, to obtain

Err ≤ 1
1− α

− 2
1− α

E
[
‖PX0‖2

]
+

2
α

E

[∥∥∥PẊ0

∥∥∥2
]
−R �

374 A. Maurer

5 An Online Algorithm

In practice H will be finite-dimensional. If the process X is slowly mixing, the
learning time m can be quite large, leading to excessive storage requirements
for any kind of batch algorithm. For this reason we used an online algorithm for
principal subspace analysis, to which every successive realization of the operator
valued variable At = (1− α)QXt − αQẊt

was fed, for t = 1, ...,m. This takes
us somewhat astray from the results proved in this paper, and would require a
different analysis in terms of stochastic approximation theory (see Benveniste et
al [1]), an analysis which we cannot provide at this point. The principal goal of
our first experiments was to test the value of our objective function L.

If v = (v1, ..., vd) is an orthonormal basis for the range of some P ∈ Pd, the
Oja-Karhunen flow [9], is given by the ordinary differential equation

v̇k = (I − Pv)Tvk,

where Pv is the projection onto the span of the vk. If T is symmetric it has been
shown by Yan et al [18] that a solution v (t) to this differential equation will
remain forever on the Stiefel-manifold of orthonormal sets if the initial condition
is orthonormal, and that it will converge to a dominant eigenspace of T for almost
all initial conditions. Discretizing gives the update rule

vk (t + 1) = vk (t) + η (t)
(
I − Pv(t)

)
Tvk (t) ,

where η (t) is a learning rate. Unfortunately a careful analysis shows that the
Stiefel manifold becomes unstable if T is not positive. The simplest solution
to this problem lies in orthonormalization. This is what we do, but there are
more elegant techniques and different flows have been proposed (see e.g. [4]) to
extract dominant eigenspaces for general symmetric operators. We now replace
T = E [At] by the process variable At to obtain the final rule

vk (t + 1) = vk (t) + η (t)
(
I − Pv(t)

) (
(1− α)QXt − αQẊt

)
vk (t) , (6)

which, together with the orthonormalization prescription, gives the algorithm
used in our experiments. The update rule (6) can be considered a combination
of Hebbian learning of input data with anti-Hebbian learning of input velocity.

6 Experiments

We applied our technique to train a preprocessor for image recognition. In all
these experiments we used the output dimension d = 10, and the trade-off pa-
rameter α = 0.8.

To train the algorithm we generated different input processes ξ to produce
sequences of 28x28-pixel, gray-scale images, normalized to unity in the euclidean
norm of R28×28. These processes are described below.

Unsupervised Slow Subspace-Learning from Stationary Processes 375

We considered two possible architectures for the preprocessor: In the linear
case we used the pixel vectors directly as inputs to our algorithm, that is X = ξ
and H = R28×28.

In the nonlinear case (RBF) we used our algorithm to train the second layer of
a two-layered radial-basis-function network. In an initial training phase a large
number (2000) of prototypes πi for the first layer were chosen from the process
ξ at time intervals larger than the mixing time and kept fixed afterwards. Define
a kernel κ on R28×28 × R28×28 by

κ (ζ1, ζ2) = exp
(
−β ‖πj − ξ‖228×28

)
,

where in practice we always use β = 4. The first network layer then implements
the (randomly chosen) nonlinear map τ : R28×28 → R2000 given by

τ (ξ)k =
2000∑
j=1

G
−1/2
kj κ (πj , ξ) , for ξ ∈ R28×28,

where G is the Gramian Gij = κ (πi, πj), which is generically non-singular. The
transformation through G

−1/2
kj is chosen to ensure that 〈τ (πi) , τ (πj)〉2000 =

κ (πi, πj). We then applied the algorithm to the output of the first layer, so
X = τ (ξ) and H = R2000.

The processes are designed to train specific geometric invariants. Fix a large
image I with periodic boundary conditions. At any time t the 28x28-process
image ξt is a mapped subimage of I and completely described by four parameters:
The position xt = (xt, yt) of ξt within the source image, a rotation angle rt and
a scale st in the interval [1/2, 3/2]. We can thus write ξt = ξ (xt, rt, st) and we
initialize to ξ0 = ξ (0, 0, 1). Given ξt we find ξt+1 by

ξt+1 = ξ (xt + Dx, rt + Dr, st + Ds) ,

where it is understood that the additions on xt and rt respect the periodic
boundary conditions, and the addition on st restricts to the interval [1/2, 3/2].
The Dx, Dr,Ds are random variables defining the essential geometric properties
of the process. Here we report two cases, corresponding to the training of rotation
and scale invariance. There were no experiments with translation invariance yet.

To train rotation invariance: The distribution of Dr is uniform on [−π, π] and
the distribution of Ds is uniform on [−0.01, 0.01]. Rapidly changing orientation,
small changes in scale.

To train scale invariance: The distribution of Dr is uniform on [−0.01, 0.01]
and the distribution of Ds is uniform on [−1, 1]. Rapidly changing scale, small
changes in orientation.

The choice of the distribution of Dx is critical, with qualitative aspects of the
exploration-exploitation dilemma. If we chose N

(
0, σ2

)
(normal, centered with

width σ) the centers of ξ will take a random walk with average stepsize σ. If

376 A. Maurer

False accept of class equality

C
or

re
ct

 a
cc

ep
t o

f c
la

ss
 e

qu
al

ity

Raw Linear RBF Raw Linear RBF

Fig. 1. ROC curves for the metric as a detector of class-equality for (left) rotation-
and (right) scale-invariant character recognition

σ is large (rapid exploration) the translation obliterates the effect of rotation
or scaling, we loose continuity and the performance degrades. If σ is small (in-
tense exploitation) the mixing time becomes large, causing exessive total learn-
ing times. We used σ = 1/2 in pixel units. With these parameter settings and
a dynamic learning rate of η (t) = 102

104+t the system was trained on m = 106

observations.
The performance of the resulting preprocessors is tested on a real life problem,

the rotation- (scale-)-invariant recognition of characters. To this end two test-
sets were prepared containing images of the digits 0-8 (0-9) in 100 randomly
chosen states of orientation (scaling between 1/2 and 3/2).

An important criterion for the quality of a preprocessor is the ability of the
distance between preprocessed examples to serve as a detector for class-equality.
Figure 1 shows corresponding receiver-operating-characteristics. The area under
these curves then estimates the probability that for four independently drawn
examples ‖a1 − b1‖10 ≤ ‖a2 − b2‖10, given that a1 and b1 belong to the same,
and a2 and b2 to different classes. We also give a practical measure by recording
the error rate of a single-example-per-class nearest-neighbour classifier, trained
on a randomly selected example for each pattern class, Error in the following
table.

Invariance Type Method used ROC-Area Error
Raw Data 0.597 0.716

Rotation Linear 0.987 0.126
RBF 0.983 0.138
Raw Data 0.690 0.508

Scaling Linear 0.866 0.421
RBF 0.989 0.100

Unsupervised Slow Subspace-Learning from Stationary Processes 377

In the case of rotation invariance, the linear preprocessor architecture even
slightly outperformed the RBF network. The latter showed stable good perfor-
mance in both cases.

References

1. A. Benveniste, M. Métevier, Pierre Priouret. Adaptive Algorithms and Stochastic
Approximations. Springer, 1987.

2. P. Földiák. Learning invariance from transformation sequences. Neural Computa-
tion, 3: 194-200, 1991.

3. A. C. Lozano, S. R. Kulkarni, R. E. Shapire. Convergence and consistency of reg-
ularized boosting algorithms with stationary, β-mixing observations. Advances in
Neural Information Processing Systems 18, 2006.

4. J.H. Manton, U. Helmke, I.M.Y. Mareels. A dual purpose principal and minor
component flow. Systems & Control Letters 54: 759-769, 2005.

5. A. Maurer, Bounds for linear multi-task learning. JMLR, 7:117–139, 2006.
6. A. Maurer, Generalization Bounds for Subspace Selection and Hyperbolic PCA.

Subspace, Latent Structure and Feature Selection. LNCS 3940: 185-197, Springer,
2006.

7. Colin McDiarmid, Concentration, in Probabilistic Methods of Algorithmic Discrete
Mathematics, p. 195-248. Springer, Berlin, 1998.

8. R. Meir. Nonparametric time series prediction through adaptive model selection.
Machine Learning, 39, 5-34, 2000.

9. E. Oja. Principal component analysis. The Handbook of Brain Theory and Neural
Networks. M. A. Arbib ed. MIT Press, 910-913, 2002.

10. S.Mika, B.Schölkopf, A.Smola, K.-R.Müller, M.Scholz and G.Rätsch. Kernel PCA
and De-noising in Feature Spaces, in Advances in Neural Information Processing
Systems 11, 1998.

11. J. Shawe-Taylor, N. Christianini, Estimating the moments of a random vector,
Proceedings of GRETSI 2003 Conference, I: 47–52, 2003.

12. M. Reed, B. Simon. Functional Analysis, part I of Methods of Mathematical
Physics, Academic Press, 1980.

13. E. Rio. Théorie asymptotique des processus aléatoires faiblement dépendants.
Springer 2000.

14. B. Simon. Trace Ideals and Their Applications. Cambridge University Press, Lon-
don, 1979

15. J. Shawe-Taylor, C.K.I. Williams, N. Cristianini, J.S. Kandola: On the eigenspec-
trum of the Gram matrix and the generalization error of kernel-PCA. IEEE Trans-
actions on Information Theory 51(7): 2510-2522, 2005.

16. M. Vidyasagar, Learning and generalization with applications to neural networks.
Springer, London, 2003.

17. L. Wiskott, T. Sejnowski. Slow feature analysis: Unsupervised learning of invari-
ances. Neural Computation, 14: 715-770, 2003.

18. W. Yan, U. Helmke, J.B. Moore. Global analysis of Oja’s flow for neural networks.
IEEE Trans. on Neural Networks 5,5: 674-683, 1994.

19. B. Yu. Rate of convergence for empirical processes of stationary mixing sequences.
Annals of Probability 22, 94-116, 1994.

Learning-Related Complexity of Linear Ranking
Functions

Atsuyoshi Nakamura

Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan

atsu@main.ist.hokudai.ac.jp

Abstract. In this paper, we study learning-related complexity of linear
ranking functions from n-dimensional Euclidean space to {1, 2, ..., k}. We
show that their graph dimension, a kind of measure for PAC learning
complexity in the multiclass classification setting, is Θ(n+k). This graph
dimension is significantly smaller than the graph dimension Ω(nk) of
the class of {1, 2, ..., k}-valued decision-list functions naturally defined
using k − 1 linear discrimination functions. We also show a risk bound
of learning linear ranking functions in the ordinal regression setting by
a technique similar to that used in the proof of an upper bound of their
graph dimension.

1 Introduction

A linear ranking function we study in this paper is a function from the n-
dimensional Euclidean space �n to the set of ranks {1, 2, ..., k} represented by
k − 1 parallel hyperplanes in �n that separate the domains of two consecutive
ranks. This function is a simple one represented by n+k−1 real parameters, and
the class of linear ranking functions is one of the most popular function classes
studied in ordinal regression.

Ordinal regression is a kind of multiclass classification problem in which there
is a linear ordering among the values of a class attribute. Problems of learning
human preference [7, 8] are often formalized as this kind of problem.

Recently, some learning algorithms of linear ranking functions have been de-
veloped from the viewpoint of large margin principle [5, 10, 11]. However, there
have been few studies on learning-related complexity specific to those functions.
The only study1 we know is a ranking loss analysis of an online learning algo-
rithm derived from the perceptron algorithm by Crammer and Singer [3], where
ranking loss of predicted rank î for true rank i is |̂i− i|.

In this paper, we study learning-related complexity of the class of linear rank-
ing functions. On this issue, Rajaram et al. [10] already proved that VC dimen-
sion of this class is the same as that of the class of linear discrimination functions.
However, it seems not to be appropriate to compare a class of {−1, 1}-valued

1 In [11], a certain risk bound was shown using Vapnik’s theorem [12, p.84], but there
seems to be some problem in their application of the theorem. See Remark 2.

J.L. Balcázar, P.M. Long, and F. Stephan (Eds.): ALT 2006, LNAI 4264, pp. 378–392, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning-Related Complexity of Linear Ranking Functions 379

functions with a class of {1, 2, ..., k}-valued functions (k > 2) by VC dimension.
For such comparison, graph dimension [9], which is an extension of VC dimen-
sion for {1, 2, ..., k}-valued functions, appears to be appropriate. In this paper,
we show a difference between graph dimensions for the above two classes; that
is, the graph dimension of the class of linear ranking functions is Θ(n+k), while
that of the class of linear discrimination functions is Θ(n).

For comparison’s sake, we also analyze the graph dimension of the class
of decision-list functions represented by k − 1 linear discrimination functions
g1, g2, ..., gk−1 that determine the function value for x by the smallest index i
that satisfies gi(x) = 1. What motivated us to study this comparison was the
following simple questions asked by our colleagues: “Why don’t you learn a lin-
ear ranking function by decomposing it into k − 1 learning problems of a linear
discrimination function? It is possible for the separator between ranks i and
i + 1 to be learned using all the instances of more than rank i as positive and
using the others as negative, isn’t it?” Giving priority to a smaller rank for the
overlapped domains of different ranks, functions learned by this method can be
seen as the above decision lists. The answer to the above questions is that the
complexity of the class of linear ranking functions is significantly smaller than
that of the class of such decision lists and, as a result, the number of instances
necessary to learn for the former is smaller than that for the latter. Actually,
we show that the graph dimension of the latter is Ω(nk), while the former is
Θ(n + k) as described above. In the problem of predicting the user’s ratings for
items, initial prediction performance for new users is an important issue, and
learners with small sample complexity are preferable for quick acquisition of the
user’s preference.

According to the theorem proved by Ben-David et al. [1], sample complexity
of PAC learning of {1, 2, ..., k}-valued functions in the multiclass classification
setting is linearly upper-bounded by graph dimension. Therefore, we can obtain
sample complexity upper bounds from our graph dimension upper bounds by
applying their theorem.

Actually, their theorem is implied by Vapnik’s more general theorem [12,
p.84], which includes the settings of not only classification but also regression.
The graph dimension of the class LR of linear ranking functions is equal to the
VC dimension of the set of indicators of the function class defined by LR using
the zero-one loss function. An upper bound of the VC dimension of the set of
indicators of the function class defined by LR using the L1 loss function instead
of the zero-one loss function is also shown by a similar argument used to prove
an upper bound of graph dimension of LR. From the upper bound, we obtain a
risk bound of learning LR in the ordinal regression setting.

This paper is organized as follows. In Section 2, two function classes, the
class LR of linear ranking functions and the class DLL of decision lists with
condition function class L, where L is the class of linear discrimination functions,
are defined. Analyses of the two function classes by VC dimension and graph
dimension are described in Section 3. In Section 4, risk bounds on learning LR

380 A. Nakamura

are shown in two settings, the multiclass classification setting and the ordinal
regression setting. Conclusions are given in Section 5.

2 Linear Ranking Functions

Let K denote the set {1, 2, ..., k}. In this paper, we consider functions from �n

to K. A linear ranking function is a function f : Rn → K defined as

f(x) = min
r∈K

{r : w · x− br < 0},

where w ∈ �n, b = (b1, b2, ..., bk−1) with b1 ≤ b2 ≤ ... ≤ bk−1 and bk = ∞. Let
LR denote the class of linear ranking functions.

For comparison, we consider a larger function class. Let B denote a class of
functions from �n to {−1, 1}. For arbitrary g1, g2, ..., gk−1 ∈ B and gk ≡ 1,
consider a kind of decision list dl[g1, g2, ..., gk−1] : Rn → K defined as

dl[g1, g2, ..., gk−1](x) = min{i : gi(x) = 1}.

We call functions defined like this decision lists with condition function class B.
Let DLB denote the class of them. As condition function classes, here, we only
consider the class L of linear discrimination functions f , namely, a function
represented by

f(x) =
{

1 if w · x < b
−1 if w · x ≥ b

using w ∈ �n and b ∈ �. We call vector w a normal vector of f . Note that
DLL ⊇ LR.

3 Complexity of LR

3.1 VC Dimension Analysis

Let F denote a class of functions from X(= �n) to K. Let l denote an arbitrary
natural number. For S = (x1,x2, ...,xl) ∈ X l and f ∈ F , define fS ∈ K l as
(f(x1), f(x2), ..., f(xl)). Function set ΠF(S) is defined as the set of functions in
F with the restricted domain S, namely, defined as follows:

ΠF(S) = {fS : f ∈ F}.

Set S ⊆ X l is said to be shattered by F if |ΠF (S)| = kl or ΠF(S) = K l, where
| · | is the number of elements in a set. Furthermore, define ΠF(l) as follows:

ΠF(l) = max
S∈Xl

|ΠF(S)|.

VC dimension dV (F) of F is defined2 as the maximum number of elements
among the sets that are shattered by F [1, 10], namely, defined as follows:

dV (F) = max{l : ΠF(l) = kl}.
2 dV (F) is called ranking dimension in [10].

Learning-Related Complexity of Linear Ranking Functions 381

Note that this definition of VC dimension coincides with the original definition
by Vapnik and Chervonenkis [13] when k = 2.

The next proposition holds trivially.

Proposition 1.

dV (DLB) ≤ dV (B)

By Proposition 1 and LR ⊆ DLL,

dV (LR) ≤ dV (L) (1)

holds. In [10], it was shown that both sides in Inequality (1) are equal.

Theorem 1 (Rajaram et al. [10]).

dV (LR) = dV (L)

Thus, dV (LR) = dV (DLL) holds, which means that no difference in the two
function classes appears by VC dimension analysis.

3.2 Graph Dimension Analysis

As another extension of VC dimension for K-valued function classes, Natarajan
considered graph dimension defined as follows.

Let function δ denote a {−1, 1}-valued function on K ×K defined as

δ(i, j) =
{

1 if i = j
−1 otherwise.

Let l denote an arbitrary natural number. For S = (x1,x2, ...,xl) ∈ X l, I =
(i1, i2, ..., il) ∈ K l and f ∈ F , define fI,S ∈ {−1, 1}l as

(δ(f(x1), i1), δ(f(x2), i2), ..., δ(f(xl), il)).

Let ΠI,F(S) denote {fI,S : f ∈ F}. Then, define ΠG
F (l) as follows:

ΠG
F (l) = max

S∈Xl,I∈Kl
|ΠI,F(S)|.

Graph dimension dG(F) of K-valued function class F [1, 9] is defined as fol-
lows:

dG(F) = max{l : ΠG
F (l) = 2l}.

From the definition of graph dimension, the graph dimension of K-valued
function class F on X can be seen as the VC dimension of {−1, 1}-valued func-
tion class Fδ on X ×K defined as follows

Fδ = {hf : hf (x, i)
def
= δ(f(x), i), f ∈ F}. (2)

382 A. Nakamura

3.3 Graph Dimension of DLL

The following lemma is a slight modification of Lemma 3.2.3 [2] proved by Blumer
et al. The proof of Lemma 1 is similar to that of their lemma and is omitted.
Note that {−1, 1}-valued function classes B1,B2, ...,Bs can be different classes
that have the same VC dimension.

Lemma 1. For s ≥ 1, let B1,B2, ...,Bs be {−1, 1}-valued function classes on X
with dV (B1) = dV (B2) = · · · = dV (Bs) = d < ∞. Let C = {mins

i=1 fi : fi ∈
Bi, 1 ≤ i ≤ s}. Then, dV (C) < 2ds log2(3s).

Theorem 2. dG(DLB) < dV (B)k(k + 1) log2(3k)

Proof. Let I = (i1, i2, ..., il) ∈ K l and S = (x1,x2, ...,xl). Let ls = |{j : ij = s}|
and define Ss as (xj1 ,xj2 , ...,xjls

), where j1, j2, ..., jls are distinct elements in
{j : ij = s}. Let Is = (ij1 , ij2 , ..., ijls

). We show

|ΠI,DLB(S)| = 2l ⇒ ls < 2dV (B)s log2(3s) (3)

for all 1 ≤ s ≤ k. Let

Hs = {hf,s : hf,s(x)
def
= δ(f(x), s), f ∈ DLB}.

Note that |ΠI,DLB(S)| = 2l implies |ΠHs(Ss)| = 2ls . Note that Hs can be
represented as follows:

Hs =
{
{mins

i=1 gi : gi ∈ B for 1 ≤ i ≤ s− 1, gs ∈ B} for 1 ≤ s < k

{mins−1
i=1 gi : gi ∈ B} for s = k,

where B = {−f : f ∈ B}. By the fact that dV (B) = dV (B) and Lemma 1,

ls ≤ dV (Hs) < 2dV (B)s log2(3s).

Thus, (3) holds for all 1 ≤ s ≤ k. Therefore,

dG(DLB) <
k∑

s=1

2dV (B)s log2(3s) ≤ k(k + 1)dV (B) log2(3k).

��

Theorem 3. n(k − 1) ≤ dG(DLL) < (n + 1)k(k + 1) log2(3k)

Proof. By Theorem 2 and the fact that dV (L) = n + 1 [2], dG(DLL) ≤ (n +
1)k(k + 1) log2(3k) holds.

Now we prove inequality (k− 1)n ≤ dG(DLL). In �n = {(x1, x2, ..., xn) : xi ∈
�}, consider subspace X0 = {(0, x2, ..., xn) : xi ∈ �}. Since X0 is isomorphic to
�n−1, the VC dimension of the class of linear discrimination functions in X0 is
n. Let S0 ∈ Xn

0 be a list of points shattered by the class of linear discrimination
functions. Let Si be a list of points made by moving S0 in the direction of

Learning-Related Complexity of Linear Ranking Functions 383

the x1-axis by i. Consider list S with length (k − 1)n made by concatenating
S1, S2, ..., Sk−1 and

I = (1, 1, ..., 1︸ ︷︷ ︸
n times

, 2, 2, ..., 2︸ ︷︷ ︸
n times

, ..., k − 1, k − 1, ..., k − 1︸ ︷︷ ︸
n times

).

We show that ΠI,DLL(S) = {−1, 1}(k−1)n. Let A be an arbitrary element in
{−1, 1}(k−1)n. In hyperplane x1 = i, which contains Si, there is a linear discrim-
ination function gi in (n − 1)-dimensional Euclidean space such that gi(x) = 1
for x ∈ Si if and only if the corresponding component in A is 1. Function gi

can be seen as a linear discrimination function fi : �n → {−1, 1} restricted in
hyperplane x1 = i. A normal vector wi of such fi can be as close to (1, 0, 0, ..., 0)
as you want, namely, it is possible that fi(x) = −1 (wi · x ≥ bi) for all elements
x in Si+1, Si+2, ..., Sk−1. (See the figure below.)

f1

... x11 2 k-1

1

2
2

2

2
3

k-1

k

k-1...

Boundary of
{x: (x)=1}

g1

Boundary of
{x: (x)=1}

w1

f2

Boundary of
{x: (x)=1}

g2

Boundary of
{x: (x)=1}

w2

f k-1

Boundary of
{x: (x)=1} g k-1

Boundary of
{x: (x)=1}w3

Then, for f = dl[f1, f2, ..., fk−1], fI,S = A holds. ��

3.4 Graph Dimension of LR

Theorem 4. dG(LR) ≥ n + k − 1

Proof. Like the proof of Theorem 3, consider a list S0 = (x1,x2, ...,xn) of n
points in �n that are contained in hyperplane x1 = 1 and shattered by linear
discrimination functions. For i = 1, 2, ..., k − 1, let xn+i = {(i + 1, 0, 0, ..., 0)}.
Let S be a list (x1,x2, ...,xn+k−1) of n + k − 1 points in �n and let

I = (1, 1, ..., 1︸ ︷︷ ︸
n times

, 2, 3, ..., k).

We show that ΠI,LR(S) = {−1, 1}n+k−1. Let A = (a1, a2, ..., an+k−1) be an
arbitrary element in {−1, 1}n+k−1. By similar reason argued in the proof of
Theorem 3, there exist w ∈ �n and b1 ≤ b2 ≤ ... ≤ bk−1 such that the linear
ranking function f(x) = minr∈K{r : w ·x− br < 0} defined by these parameters
w, b1, b2, ..., bk−1 satisfies that

f(xi) =

⎧⎨⎩ 1 if i ≤ n and ai = 1
2 if i ≤ n and ai = −1

i− n + 1 if n + 1 ≤ i ≤ n + k − 1.

384 A. Nakamura

Thus, when (an+1, an+2, ..., an+k−1) = (1, 1, ..., 1), fI,S = A holds. In the case
with (an+1, an+2, ..., an+k−1) �= (−1,−1, ...,−1), fI,S = A holds if thresholds
b2, b3, ..., bk−1 of f are changed to b′2, b

′
3, ..., b

′
k−1 defined as follows:

b′i =

⎧⎪⎪⎨⎪⎪⎩
bi if an+i−1 = 1, i �= i∗

bi+1 if an+i−1 = 1, i = i∗

bi−1 if an+i−1 = −1, i < i∗

bi+1 if an+i−1 = −1, i > i∗,

where i∗ = max{j : an+j−1 = 1}. (See the figure below.)

x1

2 3 4 5 6

b 2 b 3 b 4 b 5

2 3 4 5 6

f I,S=(...,1,1,1,1,1)

2 3 4 5 6

b’2 b’3

2 4 4 4 5

f I,S=(...,1,-1,1,-1,-1)

=

i*=4

b’5 b’6=

...

b 6=

x1
...

=b’4

When (an+1, an+2, ..., an+k−1) = (−1,−1, ...,−1), by choosing a vector w close
to (−1, 0, 0, ..., 0) and using thresholds with b1 = b2 = · · · = bk−1, we get a linear
ranking function f that satisfies

f(xi) =
{
k if i ≤ n and ai = −1
1 otherwise.

Then, fI,S = A holds. ��

To prove dG(LR) = O(n + k), we use notions and notations in the area of
combinatorial geometry [4]. Let H be a finite set of hyperplanes in �d. The
arrangement A(H) of H is a dissection of �d into connected pieces of various
dimensions defined by H . Let H be composed of m hyperplanes h1, h2, ..., hm.
Each hi ∈ H is represented as gi(x) = 0 using linear (or, more precisely, affine)
function gi : �d → �. For an arbitrary point p, the face position vector3 u(p) of
p is defined as (v1(p), v2(p), ..., vm(p)), where

vi(p) =

⎧⎨⎩+1 if gi(p) > 0
0 if gi(p) = 0

−1 if gu(p) < 0.

The binary position vector of p is a binarized vector of u(p) by replacing 0 with
+1. A set of points with the same face position vector is called a face. A k-flat
is defined as the affine hull of k + 1 affinely independent points. A face is called
a cell if it is d-flat. An arrangement A(H) of m ≥ d hyperplanes in �d is called
simple if any d hyperplanes of H have a unique point in common and if any d+1
hyperplanes have no point in common. When m < d, A(H) is called simple if
the common intersection of the m hyperplanes is a (d−m)-flat.
3 In [4], this is simply called a position vector. We added the word ‘face’ for distin-

guishing this from a binary position vector we introduced below.

Learning-Related Complexity of Linear Ranking Functions 385

Lemma 2. Let H be a set of m ≥ d hyperplanes in �d such that A(H) is simple.
Then, the number of distinct binary position vectors is equal to the number of
cells.

Proof. Assume that the face position vector u(p) for point p = (π1, π2, ..., πd)
has l zero-valued components and that the set of their indices is S. For i ∈ S,
there exists a tiny value Δ such that the face position vector for point p′ =
(π1, π2, ..., πi−1, πi + Δ,πi+1, ..., πd) has +1 for its ith component and the same
values for the other components by ‘simple’ assumption. By repeating this pro-
cedure, the number of zero-valued components can be reduced one by one and
finally you can get a point q with u(q) having no zero-valued component, namely,
a point in a cell. The binary position vectors of p and q are trivially the same. ��

h
1 h

2

h
3

++-

-+- +--

-++ +-+
--+

+++

Fig. 1. Case in which the number of distinct binary vectors is larger than the number
of cells. The directions of the arrows going out from hyperplanes indicate positive
directions.

Remark 1. Note that Lemma 2 does not hold when A(H) is not simple. See
Fig. 1.

Lemma 3 (A part of Lemma 1.2 in [4]). Let H be a set of m hyperplanes
in �d such that A(H) is simple. Then, the number of cells is∑d

i=0

(
m
i

)
.

Lemma 4. For a ≥ 2e, ax ≥ 2x ⇒ x < 2 log2 a.

Proof.

1 + log2 e < e

2 log2 2e < 2e

Thus, for a ≥ 2e,

2 log2 a < a

2a log2 a < 22log2a

This means ax < 2x at x = 2 log2 a. Therefore, x < 2 log2 a must be hold to
make ax ≥ 2x hold. ��

386 A. Nakamura

Theorem 5. dG(LR) < 5(n + k − 1)

Proof. Let S = (x1,x2, ...,xl) ∈ X l and I = (i1, i2, ..., il) ∈ K l. Then, for an
arbitrary f ∈ LR defined by w ∈ �n and b = (b1, b2, ..., bk−1) ∈ �k−1,

δ(f(xj), ij) =
{

1 if w · xj − bij−1 ≥ 0 and w · xj − bij < 0
−1 if w · xj − bij−1 < 0 or w · xj − bij ≥ 0

when 1 < ij < k,

δ(f(xj), ij) =
{

1 if w · xj − bij < 0
−1 if w · xj − bij ≥ 0

when ij = 1, and

δ(f(xj), ij) =
{

1 if w · xj − bij−1 ≥ 0
−1 if w · xj − bij−1 < 0

when ij = k.
Let

hj,i = {z : z ∈ �n+k−1, z · (xj ,1i) = 0},
where 1i is a (k− 1)-dimensional vector of which component values are 0 except
the ith one-valued component. Note that z in the definition of hj,i is a vector
that corresponds to (w,b). Thus, hj,i is a hyperplane in �n+k−1 with normal
vector (xj ,1i), where the space �n+k−1 can be seen as the functional space
corresponding to LR. Consider a set H of hyperplanes defined by

H = {hj,ij : 1 ≤ j ≤ l, ij �= k} ∪ {hj,ij−1 : 1 ≤ j ≤ l, ij �= 1}.

For f, g ∈ LR defined by (wf ,bf), (wg,bg), respectively, if fI,S �= gI,S, then
the binary position vectors of (wf ,bf) and (wg,bg) for H are different. Thus,
the number of distinct binary position vectors for H must be at least 2l in order
that equation |ΠG

LR(l)| = 2l holds. The number of binary position vectors is
maximized when A(H) is simple, and then it is equal to the number of cells by
Lemma 2. Thus, by Lemma 3,

d∑
i=0

(
m
i

)
≥ 2l,

where d = n+k−1 and m is the number of hyperplanes in H , must hold. Define

Φd(m) as
∑d

i=0

(
m
i

)
, then Φd is increasing, so

Φd(2l) ≥ 2l

must hold because m ≤ 2l. Since Φd(m) ≤ (em/d)d by Proposition A2.1 in [2],

(2el/d)d ≥ 2l

Learning-Related Complexity of Linear Ranking Functions 387

must hold. By replacing l with xd, this inequality becomes

(2ex)d ≥ 2xd,

which is equivalent to
2ex ≥ 2x. (4)

To make (4) hold, x must be less than 2 log2 2e < 5 by Lemma 4. Thus,

l < 5d = 5(n + k − 1). ��

4 Risk Bounds on Learning LR

In this section, we show risk bounds on learning LR in two settings, the multi-
class classification setting and the ordinal regression setting.

4.1 Vapnik’s Framework of Risk Minimization

The learning framework we adopt here is Vapnik’s framework of risk minimiza-
tion. Vapnik considered the following general setting [12, p.20] of the learning
problem, which generalizes all of the settings of classification, regression and
density estimation.

Problem 1 (Vapnik’s general setting of the learning problem). Let P be a prob-
ability measure on the space Z and let {Q(·, α) : α ∈ Λ} be a set of real-valued
functions on Z parameterized by α. Given an i.i.d. sample z1, z2, ..., zl, find
α0 ∈ Λ that minimize the risk functional

R(α) =
∫

Q(z, α)dP (z)

under the condition that the probability measure P is unknown.

In the classification and regression settings, the space Z is the product space of
spaces X and Y , and we consider the class of functions f ∈ F from the space X
to the space Y and real-valued loss function L on Y × Y . Then, Q is defined by

Q((x, y), f) = L(f(x), y).

The loss function L is the zero-one loss L0-1 defined as

L0-1(y1, y2) =
{

0 if y1 = y2
1 if y1 �= y2

in the classification settings, and the L1 loss LL1 defined as

LL1(y1, y2) = |y1 − y2|

in our ordinal regression settings.

388 A. Nakamura

In order to generalize the result obtained for the set of {0, 1}-valued func-
tions to the set of real-valued functions, Vapnik considered a set of indicators
I(·, α, β), α ∈ Λ, β ∈ (infz,α Q(z, α), supz,α Q(z, α)) of the set of real-valued func-
tions Q(·, α), α ∈ Λ:

I(z, α, β) = θ(Q(z, α)− β) where θ(x) =
{

0 if x < 0
1 if x ≥ 0.

Note that I(z, α, β) = Q(z, α) for all β ∈ (0, 1) when {Q(·, α) : α ∈ Λ} is a set
of {0, 1}-valued functions.

Vapnik showed the following theorem for the set of totally bounded nonneg-
ative functions.

Theorem 6 (Vapnik [12, p.84]). Let {Q(·, α) : α ∈ Λ} be a set of nonnegative
functions on Z whose range is bounded by B, and let h denote the VC dimension
of the set of indicators of the function class. Let z1, z2, ..., zl be an i.i.d. sample
drawn from Z according to an arbitrary unknown distribution. Define Remp(α)
as (
∑l

i=1 Q(zi, α))/l. Then, the following inequality holds with probability at least
1− δ simultaneously for all α ∈ Λ:

R(α) ≤ Remp(α) +
BE
2

(
1 +

√
1 +

4Remp(α)
BE

)
,

where

E = 4
h(ln(2l/h) + 1)− ln(δ/4)

l
.

4.2 Error Probability Bounds in the Multi-class Classification
Setting

Let F be a class of K-valued functions on X and let Fδ denote the class of
{−1, 1}-valued functions defined by (2). Define FL0-1 as

FL0-1 = {Q(·, f) : Q((x, i), f)
def
= L0-1(f(x), i), f ∈ F}.

Then, trivially, dV (FL0-1) = dV (Fδ). Since dV (Fδ) = dG(F), the following corol-
lary of Theorem 6 is obtained.

Corollary 1. LetF be a class ofK-valued functions onX. Let (x1, i1), (x2, i2), ...,
(xl, il) be an i.i.d. sample drawn from X ×K according to an arbitrary unknown
distribution D. Then, the following inequality holds with probability at least 1 − δ
simultaneously for all f ∈ F :

Pr(x,i)∼D(f(x) �= i) ≤ m

l
+
E
2

(
1 +

√
1 +

4m
lE

)
,

where m is the number of instances (xj , ij) with f(xj) �= ij and

E = 4
dG(F)(ln(2l/dG(F)) + 1)− ln(δ/4)

l
.

Learning-Related Complexity of Linear Ranking Functions 389

For f : X → K, f is said to be an ε-close hypothesis when f satisfies that

Pr(x,i)∼D(f(x) �= i) < ε.

The above corollary implies the following theorem proved by Ben-David et al.
[1].

Theorem 7 (Ben-David et al. [1]). Let F be a class of K-valued functions
on X. Let D be an arbitrary unknown probabilistic distribution on X×K. Then,
there exists a constant value c > 0 such that, for given 0 < ε, δ < 1, the probability
that a hypothesis in F consistent with

l ≥ c

ε

(
dG(F) log

1
ε

+ log
1
δ

)
(5)

instances randomly drawn according to D is ε-close is more than 1− δ.

By Theorem 7 and the results shown in Section 3.2, the number of instances
necessary to PAC-learn by a consistent hypothesis finder is O(k+n) for LR and
O(nk2 log k) for DLL with respect to parameters k and n.

For given m instances in �n × K, a consistent linear ranking function from
�n to K can be obtained in time polynomial to n, l and k by solving a linear
programming problem composed of n+k−1 variables and at most 2l constraints.
Note that a linear programming problem can be solved in polynomial time by
an algorithm such as Karmarkar’s algorithm [6]. A consistent function in DLL
can be also obtained in polynomial time by solving k learning problems of linear
discrimination functions, which are known to be solved in polynomial time by
linear programming [2].

4.3 Risk Bounds in the Ordinal Regression Setting

The set Fθ of indicators of {Q(·, f) : Q((x, i), f)
def
= LL1(f(x), i), f ∈ F} can be

represented as follows:

Fθ = {hf,β : hf,β(x, i)
def
= θ(|f(x)− i| − β), f ∈ F , β ∈ (0, k − 1)}.

Lemma 5. dV (LRθ) < 2(log2 e(k − 1))(n + k − 1)

Proof. Let S = (x1,x2, ...,xl) ∈ X l and I = (i1, i2, ..., il) ∈ K l. Then, for an
arbitrary f ∈ LR defined by w ∈ �n and b = (b1, b2, ..., bk−1) ∈ �k−1,

θ(|f(xj)− ij| − β) =
{

0 if w · xj − bij−�β� ≥ 0 and w · xj − bij+�β�−1 < 0
1 if w · xj − bij−�β� < 0 or w · xj − bij+�β�−1 ≥ 0

when β ≤ ij − 1 and β ≤ k − ij,

θ(|f(xj)− ij| − β) =
{

0 if w · xj − bij+�β�−1 < 0
1 if w · xj − bij+�β�−1 ≥ 0

390 A. Nakamura

when β > ij − 1 and β ≤ k − ij,

θ(|f(xj)− ij| − β) =
{

0 if w · xj − bij−�β� ≥ 0
1 if w · xj − bij−�β� < 0

when β ≤ ij − 1 and β > k − ij, and

θ(|f(xj)− ij| − β) = 0

when β > ij − 1 and β > k − ij.
Let

H = {hj,i : 1 ≤ j ≤ l, 1 ≤ i ≤ k − 1}

where
hj,i = {z : z ∈ �n+k−1, z · (xj ,1i) = 0}

as defined in the proof of Theorem 5. By a similar discussion as that in the proof
of Theorem 5,

Φd(m) ≥ 2l,

where d = n+ k− 1 and m is the number of hyperplanes in H , must hold. Since
m ≤ (k − 1)l,

Φd((k − 1)l) ≥ 2l

must hold. Thus, a similar argument using Lemma 4 as that in the proof of
Theorem 5 leads to

l < 2(log2 e(k − 1))(n + k − 1).

��

Remark 2. Note that4 dV (LRθ) ≥ n+k−1 because LRθ⊇LRL0-1 and dV (LRL0-1)
= dV (LRδ) ≥ n + k − 1 by Theorem 4.

Corollary 2. Let (x1, i1), (x2, i2), ..., (xl, il) be an i.i.d. sample drawn from
X × K according to an arbitrary unknown distribution D. Then, the following
inequality holds with probability at least 1− δ simultaneously for all f ∈ LR:

E(x,i)∼D(|f(x)− i|) ≤ Remp(f) +
(k − 1)E

2

(
1 +

√
1 +

4Remp(f)
(k − 1)E

)
,

where Remp(f) = (
∑l

j=1 |f(xj)− ij |)/l,

E = 4
h(ln(2l/h) + 1)− ln(δ/4)

l
and h = 2(log2 e(k − 1))(n + k − 1).

4 In the process of obtaining a risk bound by applying Theorem 6 to the ordinal
regression of LR, dV (LRθ) was calculated as n in [11], which contradicts our result.

Learning-Related Complexity of Linear Ranking Functions 391

Remark 3. By Corollary 1, the following inequality holds with probability at
least 1− δ simultaneously for all f ∈ LR:

E(x,i)∼D(|f(x) − i|) ≤ (k − 1)Pr(x,i)∼D(f(x) �= i)≤ (k − 1)

(
m

l
+

E
2

(
1+

√
1+

4m

lE

))
,

where m is the number of instances (xj , ij) with f(xj) �= ij and

E = 4
h(ln(2l/h)) + 1)− ln(δ/4)

l
and h = 5(n + k − 1).

With respect to k and n, this bound is O(k(n+k)), which is better than O(k(n+
k) log k), the bound obtained in Corollary 2.

5 Concluding Remarks

We showed that graph dimension of the class of linear ranking functions is Θ(n+
k), which is asymptotically significantly smaller that the graph dimension Ω(nk)
of the class of {1, 2, ..., k}-valued decision lists naturally defined using k − 1
linear discrimination functions. This difference causes the difference in sample
complexity upper bounds for PAC learning of those classes. However, in order
to show that sample complexities of the two learning problems are definitely
different, their lower bounds should also be analyzed. Analyses of margin-based
risk bounds in both the multiclass classification and ordinal regression settings
would also be interesting.

Acknowledgments

The author would like to thank Prof. Mineichi Kudo and Jun Toyama for helpful
discussions which led to this research.

References

1. S. Ben-David, Nicolo Cesa-Bianchi, D. Haussler and P. M. Long. Characterizations
of Learnability for Classes of {0, ..., n}-Valued Functions. Journal of Computer and
System Sciences 50, 1995, pp.74-86.

2. A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth. Learnability and the
Vapnik-Chervonenkis Dimension. Journal of the ACM 36(4), 1989, pp.929-965.

3. K. Crammer and Y. Singer. Pranking with Ranking. Advances in Neural Informa-
tion Processing 14, 2002, pp.641-647.

4. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin
Heidelberg, 1987.

5. R. Herbrich, T. Graepel and K. Obermayer. Large Margin Rank Boundaries for
Ordinal Regression. Advances in Large Margin Classifiers, 2000, pp.115-132.

6. N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming. Com-
binatorica 4, 1984, PP.373-395.

392 A. Nakamura

7. A. Nakamura and N. Abe. Collaborative Filtering using Weighted Majority Pre-
diction Algorithms. Proceedings of the 15th International Conference on Machine
Learning, 1998, pp.395-403.

8. A. Nakamura, M. Kudo and A. Tanaka. Collaborative Filtering using Restoration
Operators. Proceedings of the 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, 2003, pp.339-349.

9. B. K. Natarajan. On Learning Sets and Functions. Machine Learning 4, 1989,
pp.67-97.

10. S. Rajaram, A. Garg, X. S. Zhou and T. S. Huang. Classification Approach towards
Ranking and Sorting Problems. Proceedings of the 14th European Conference on
Machine Learning, Lecture Notes in Artificial Intelligence 2837, 2003, pp.301-312.

11. A. Shashua and A. Levin. Taxonomy of Large Margin Principle Algorithms for Or-
dinal Regression Problems. Technical Report 2002-39, Leibniz Center for Research,
School of Computer Science and Eng., the Hebrew University of Jerusalem.

12. V. N. Vapnik. The Nature of Statistical Learning Theory (2nd Edition), Springer-
Verlag New York, Inc., 1999.

13. V. N. Vapnik and A. Y. Chervonenkis. On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities. Theory Probab. Appl. 16(2), 1971,
pp.264-280.

Author Index

Allenberg, Chamy 229
Alper, Pinar 12
Atıcı, Alp 32
Auer, Peter 229

Balbach, Frank J. 93
Balcázar, Jose L. 1
Bentov, Iddo 184
Bshouty, Nader H. 48, 184

Castro, Jorge 78
Chikayama, Takashi 348
Corcho, Oscar 12
Cortes, Corinna 288

de Brecht, Matthew 124
De Roure, David 12

Even-Dar, Eyal 199

Fenner, Stephen 109

Gasarch, William 109
Goble, Carole 12
Györfi, László 229

Hatano, Kohei 304
Hutter, Marcus 244, 334

Jain, Sanjay 139, 154, 169

Kääriäinen, Matti 63
Kearns, Michael 199
Kinber, Efim 139, 154
Kontorovich, Leonid 288

Lange, Steffen 169
Legg, Shane 274
Li, Ling 319
Lin, Hsuan-Tien 319
Long, Philip M. 1

Maurer, Andreas 363
Mohri, Mehryar 288

Nakamura, Atsuyoshi 378
Ng, Andrew Y. 29

Ottucsák, György 229

Poland, Jan 259

Rätsch, Gunnar 10
Ryabko, Daniil 334

Servedio, Rocco A. 32
Shibata, Takeshi 348
Simon, Hans Ulrich 13
Smyth, Padhraic 28
Stephan, Frank 1

Vovk, Vladimir 214

Wattad, Ehab 48
Wortman, Jennifer 199

Yamamoto, Akihiro 124
Yoshinaka, Ryo 348

Zeugmann, Thomas 93
Zilles, Sandra 169

	Frontmatter
	Editors' Introduction
	Invited Contributions
	Solving Semi-infinite Linear Programs Using Boosting-Like Methods
	e-Science and the Semantic Web: A Symbiotic Relationship
	Spectral Norm in Learning Theory: Some Selected Topics
	Data-Driven Discovery Using Probabilistic Hidden Variable Models
	Reinforcement Learning and Apprenticeship Learning for Robotic Control

	Regular Contributions
	Learning Unions of ω(1)-Dimensional Rectangles
	On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle
	Active Learning in the Non-realizable Case
	How Many Query Superpositions Are Needed to Learn?
	Teaching Memoryless Randomized Learners Without Feedback
	The Complexity of Learning SUBSEQ ({\itshape A})
	Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data
	Learning and Extending Sublanguages
	Iterative Learning from Positive Data and Negative Counterexamples
	Towards a Better Understanding of Incremental Learning
	On Exact Learning from Random Walk
	Risk-Sensitive Online Learning
	Leading Strategies in Competitive On-Line Prediction
	Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring
	General Discounting Versus Average Reward
	The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection
	Is There an Elegant Universal Theory of Prediction?
	Learning Linearly Separable Languages
	Smooth Boosting Using an Information-Based Criterion
	Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice
	Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence
	Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning
	Unsupervised Slow Subspace-Learning from Stationary Processes
	Learning-Related Complexity of Linear Ranking Functions

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

